Question 257192
1.{{{bx + ay = -2a + b}}}
2.{{{b^2*x + a^2*y = -ab}}}
Use eq. 1 to solve for x,
{{{bx + ay = b-2a}}}
{{{bx= b-2a-ay}}}
{{{b^2x= b^2-2ab-aby}}}
Subsitute into eq. 2 and solve for y,
2.{{{b^2*x + a^2*y = -ab}}}
{{{b^2-2ab-aby + a^2*y = -ab}}}
{{{y(a^2-ab) = ab-b^2}}}
{{{y= (ab-b^2)/(a^2-ab) }}}
{{{y= (b*cross((a-b)))/(a*cross((a-b))) }}}
{{{y= b/a}}}
Then use this to find x, 
{{{b^2x= b^2-2ab-aby}}}
{{{b^2x= b^2-2ab-ab*(b/a)}}}
{{{b^2x= b^2-2ab-b^2)}}}
{{{b^2x=-2ab}}}
{{{x=-2(a/b)}}}