Question 257315


{{{(x-3)(x+2)}}} Start with the given expression.



Now let's FOIL the expression.



Remember, when you FOIL an expression, you follow this procedure:



{{{(highlight(x)-3)(highlight(x)+2)}}} Multiply the <font color="red">F</font>irst terms:{{{(x)*(x)=x^2}}}.



{{{(highlight(x)-3)(x+highlight(2))}}} Multiply the <font color="red">O</font>uter terms:{{{(x)*(2)=2*x}}}.



{{{(x+highlight(-3))(highlight(x)+2)}}} Multiply the <font color="red">I</font>nner terms:{{{(-3)*(x)=-3*x}}}.



{{{(x+highlight(-3))(x+highlight(2))}}} Multiply the <font color="red">L</font>ast terms:{{{(-3)*(2)=-6}}}.



---------------------------------------------------

So we have the terms: {{{x^2}}}, {{{2*x}}}, {{{-3*x}}}, {{{-6}}} 



{{{x^2+2*x-3*x-6}}} Now add every term listed above to make a single expression.



{{{x^2-x-6}}} Now combine like terms.



So {{{(x-3)(x+2)}}} FOILs to {{{x^2-x-6}}}.



In other words, {{{(x-3)(x+2)=x^2-x-6}}}.