Question 254962
Lets take the first equation first. We can apply synthetic division. It is easier:
6x^2 - 31x + 5) / (x - 5)
It looks like this:
5 l . . . . 6 . . . . . -31 . . . . . . 5
 . . . . . . . . . . . . .30 . . . . . . . -5
 . . . . . . 6 . . . . . .-1 . . . . . . r = 0
So, we get 6x-1 with no remainder
--
We apply the same approach to the second one to get
(x^3 + 2x^2 - 3x + 2) / (x + 1)
(-1) l . . . . . . 1 . . . . . .2 . . . . . -3 . . . . . .2
 . . . . . . . . . . . . . . . . .-1 . . . . . -1 . . . . .4
 . . . . . . . . . .1 . . . . . .1 . . . . . -4 . . . . . .6
So, we get 1x^2 + 1x - 4 + 6/(x+1)