Question 253634
I'll do the first two to get you going.


# 1



Looking at the expression {{{4x^2-48x+135}}}, we can see that the first coefficient is {{{4}}}, the second coefficient is {{{-48}}}, and the last term is {{{135}}}.



Now multiply the first coefficient {{{4}}} by the last term {{{135}}} to get {{{(4)(135)=540}}}.



Now the question is: what two whole numbers multiply to {{{540}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{-48}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{540}}} (the previous product).



Factors of {{{540}}}:

1,2,3,4,5,6,9,10,12,15,18,20,27,30,36,45,54,60,90,108,135,180,270,540

-1,-2,-3,-4,-5,-6,-9,-10,-12,-15,-18,-20,-27,-30,-36,-45,-54,-60,-90,-108,-135,-180,-270,-540



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{540}}}.

1*540 = 540
2*270 = 540
3*180 = 540
4*135 = 540
5*108 = 540
6*90 = 540
9*60 = 540
10*54 = 540
12*45 = 540
15*36 = 540
18*30 = 540
20*27 = 540
(-1)*(-540) = 540
(-2)*(-270) = 540
(-3)*(-180) = 540
(-4)*(-135) = 540
(-5)*(-108) = 540
(-6)*(-90) = 540
(-9)*(-60) = 540
(-10)*(-54) = 540
(-12)*(-45) = 540
(-15)*(-36) = 540
(-18)*(-30) = 540
(-20)*(-27) = 540


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{-48}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>540</font></td><td  align="center"><font color=black>1+540=541</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>270</font></td><td  align="center"><font color=black>2+270=272</font></td></tr><tr><td  align="center"><font color=black>3</font></td><td  align="center"><font color=black>180</font></td><td  align="center"><font color=black>3+180=183</font></td></tr><tr><td  align="center"><font color=black>4</font></td><td  align="center"><font color=black>135</font></td><td  align="center"><font color=black>4+135=139</font></td></tr><tr><td  align="center"><font color=black>5</font></td><td  align="center"><font color=black>108</font></td><td  align="center"><font color=black>5+108=113</font></td></tr><tr><td  align="center"><font color=black>6</font></td><td  align="center"><font color=black>90</font></td><td  align="center"><font color=black>6+90=96</font></td></tr><tr><td  align="center"><font color=black>9</font></td><td  align="center"><font color=black>60</font></td><td  align="center"><font color=black>9+60=69</font></td></tr><tr><td  align="center"><font color=black>10</font></td><td  align="center"><font color=black>54</font></td><td  align="center"><font color=black>10+54=64</font></td></tr><tr><td  align="center"><font color=black>12</font></td><td  align="center"><font color=black>45</font></td><td  align="center"><font color=black>12+45=57</font></td></tr><tr><td  align="center"><font color=black>15</font></td><td  align="center"><font color=black>36</font></td><td  align="center"><font color=black>15+36=51</font></td></tr><tr><td  align="center"><font color=black>18</font></td><td  align="center"><font color=black>30</font></td><td  align="center"><font color=black>18+30=48</font></td></tr><tr><td  align="center"><font color=black>20</font></td><td  align="center"><font color=black>27</font></td><td  align="center"><font color=black>20+27=47</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>-540</font></td><td  align="center"><font color=black>-1+(-540)=-541</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>-270</font></td><td  align="center"><font color=black>-2+(-270)=-272</font></td></tr><tr><td  align="center"><font color=black>-3</font></td><td  align="center"><font color=black>-180</font></td><td  align="center"><font color=black>-3+(-180)=-183</font></td></tr><tr><td  align="center"><font color=black>-4</font></td><td  align="center"><font color=black>-135</font></td><td  align="center"><font color=black>-4+(-135)=-139</font></td></tr><tr><td  align="center"><font color=black>-5</font></td><td  align="center"><font color=black>-108</font></td><td  align="center"><font color=black>-5+(-108)=-113</font></td></tr><tr><td  align="center"><font color=black>-6</font></td><td  align="center"><font color=black>-90</font></td><td  align="center"><font color=black>-6+(-90)=-96</font></td></tr><tr><td  align="center"><font color=black>-9</font></td><td  align="center"><font color=black>-60</font></td><td  align="center"><font color=black>-9+(-60)=-69</font></td></tr><tr><td  align="center"><font color=black>-10</font></td><td  align="center"><font color=black>-54</font></td><td  align="center"><font color=black>-10+(-54)=-64</font></td></tr><tr><td  align="center"><font color=black>-12</font></td><td  align="center"><font color=black>-45</font></td><td  align="center"><font color=black>-12+(-45)=-57</font></td></tr><tr><td  align="center"><font color=black>-15</font></td><td  align="center"><font color=black>-36</font></td><td  align="center"><font color=black>-15+(-36)=-51</font></td></tr><tr><td  align="center"><font color=red>-18</font></td><td  align="center"><font color=red>-30</font></td><td  align="center"><font color=red>-18+(-30)=-48</font></td></tr><tr><td  align="center"><font color=black>-20</font></td><td  align="center"><font color=black>-27</font></td><td  align="center"><font color=black>-20+(-27)=-47</font></td></tr></table>



From the table, we can see that the two numbers {{{-18}}} and {{{-30}}} add to {{{-48}}} (the middle coefficient).



So the two numbers {{{-18}}} and {{{-30}}} both multiply to {{{540}}} <font size=4><b>and</b></font> add to {{{-48}}}



Now replace the middle term {{{-48x}}} with {{{-18x-30x}}}. Remember, {{{-18}}} and {{{-30}}} add to {{{-48}}}. So this shows us that {{{-18x-30x=-48x}}}.



{{{4x^2+highlight(-18x-30x)+135}}} Replace the second term {{{-48x}}} with {{{-18x-30x}}}.



{{{(4x^2-18x)+(-30x+135)}}} Group the terms into two pairs.



{{{2x(2x-9)+(-30x+135)}}} Factor out the GCF {{{2x}}} from the first group.



{{{2x(2x-9)-15(2x-9)}}} Factor out {{{15}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(2x-15)(2x-9)}}} Combine like terms. Or factor out the common term {{{2x-9}}}



===============================================================



Answer:



So {{{4x^2-48x+135}}} factors to {{{(2x-15)(2x-9)}}}.



In other words, {{{4x^2-48x+135=(2x-15)(2x-9)}}}.



Note: you can check the answer by expanding {{{(2x-15)(2x-9)}}} to get {{{4x^2-48x+135}}} or by graphing the original expression and the answer (the two graphs should be identical).

========================================================================


# 2





Looking at the expression {{{18x^2-3x-1}}}, we can see that the first coefficient is {{{18}}}, the second coefficient is {{{-3}}}, and the last term is {{{-1}}}.



Now multiply the first coefficient {{{18}}} by the last term {{{-1}}} to get {{{(18)(-1)=-18}}}.



Now the question is: what two whole numbers multiply to {{{-18}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{-3}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{-18}}} (the previous product).



Factors of {{{-18}}}:

1,2,3,6,9,18

-1,-2,-3,-6,-9,-18



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{-18}}}.

1*(-18) = -18
2*(-9) = -18
3*(-6) = -18
(-1)*(18) = -18
(-2)*(9) = -18
(-3)*(6) = -18


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{-3}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>-18</font></td><td  align="center"><font color=black>1+(-18)=-17</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>-9</font></td><td  align="center"><font color=black>2+(-9)=-7</font></td></tr><tr><td  align="center"><font color=red>3</font></td><td  align="center"><font color=red>-6</font></td><td  align="center"><font color=red>3+(-6)=-3</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>18</font></td><td  align="center"><font color=black>-1+18=17</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>9</font></td><td  align="center"><font color=black>-2+9=7</font></td></tr><tr><td  align="center"><font color=black>-3</font></td><td  align="center"><font color=black>6</font></td><td  align="center"><font color=black>-3+6=3</font></td></tr></table>



From the table, we can see that the two numbers {{{3}}} and {{{-6}}} add to {{{-3}}} (the middle coefficient).



So the two numbers {{{3}}} and {{{-6}}} both multiply to {{{-18}}} <font size=4><b>and</b></font> add to {{{-3}}}



Now replace the middle term {{{-3x}}} with {{{3x-6x}}}. Remember, {{{3}}} and {{{-6}}} add to {{{-3}}}. So this shows us that {{{3x-6x=-3x}}}.



{{{18x^2+highlight(3x-6x)-1}}} Replace the second term {{{-3x}}} with {{{3x-6x}}}.



{{{(18x^2+3x)+(-6x-1)}}} Group the terms into two pairs.



{{{3x(6x+1)+(-6x-1)}}} Factor out the GCF {{{3x}}} from the first group.



{{{3x(6x+1)-1(6x+1)}}} Factor out {{{1}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(3x-1)(6x+1)}}} Combine like terms. Or factor out the common term {{{6x+1}}}



===============================================================



Answer:



So {{{18x^2-3x-1}}} factors to {{{(3x-1)(6x+1)}}}.



In other words, {{{18x^2-3x-1=(3x-1)(6x+1)}}}.



Note: you can check the answer by expanding {{{(3x-1)(6x+1)}}} to get {{{18x^2-3x-1}}} or by graphing the original expression and the answer (the two graphs should be identical).