Question 32050
Try this:
Factor:
{{{225x^2k-196y^2k}}} First, factor the k.
{{{k(225x^2-196y^2)}}} Notice that inside the parentheses you have the difference of two squares. The difference of two squares can be factored thus:
{{{A^2 - B^2 = (A-B)(A+B)}}} For your problem, you have:
{{{(15x)^2 - (14y)^2 = (15x - 14y)(15x + 14y)}}} The final answer is:
{{{225x^2k - 196y^2k = k(15x - 14y)(15x + 14y)}}}