Question 251768

{{{3*sqrt(50)-4*sqrt(2)}}} Start with the given expression



{{{3*5*sqrt(2)-4*sqrt(2)}}} Simplify {{{sqrt(50)}}} to get {{{5*sqrt(2)}}}. Note: If you need help with simplifying square roots, check out this <a href=http://www.algebra.com/algebra/homework/Radicals/simplifying-square-roots.solver> solver</a>.



{{{3*5*sqrt(2)-4*sqrt(2)}}} Simplify {{{sqrt(2)}}} to get {{{sqrt(2)}}}.



{{{15*sqrt(2)-4*sqrt(2)}}} Multiply 3 and 5 to get 15.

 

Since we have the common term {{{sqrt(2)}}}, we can combine like terms



{{{(15-4)sqrt(2)}}} Factor out the GCF {{{sqrt(2)}}}



{{{11*sqrt(2)}}} Combine like terms.



So {{{3*sqrt(50)-4*sqrt(2)}}} simplifies to {{{11*sqrt(2)}}}. 



In other words,  {{{3*sqrt(50)-4*sqrt(2)=11*sqrt(2)}}}