Question 251755
{{{4x^2+81-36x}}} Start with the given expression.



{{{4x^2-36x+81}}} Rearrange the terms.



Looking at the expression {{{4x^2-36x+81}}}, we can see that the first coefficient is {{{4}}}, the second coefficient is {{{-36}}}, and the last term is {{{81}}}.



Now multiply the first coefficient {{{4}}} by the last term {{{81}}} to get {{{(4)(81)=324}}}.



Now the question is: what two whole numbers multiply to {{{324}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{-36}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{324}}} (the previous product).



Factors of {{{324}}}:

1,2,3,4,6,9,12,18,27,36,54,81,108,162,324

-1,-2,-3,-4,-6,-9,-12,-18,-27,-36,-54,-81,-108,-162,-324



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{324}}}.

1*324 = 324
2*162 = 324
3*108 = 324
4*81 = 324
6*54 = 324
9*36 = 324
12*27 = 324
18*18 = 324
(-1)*(-324) = 324
(-2)*(-162) = 324
(-3)*(-108) = 324
(-4)*(-81) = 324
(-6)*(-54) = 324
(-9)*(-36) = 324
(-12)*(-27) = 324
(-18)*(-18) = 324


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{-36}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>324</font></td><td  align="center"><font color=black>1+324=325</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>162</font></td><td  align="center"><font color=black>2+162=164</font></td></tr><tr><td  align="center"><font color=black>3</font></td><td  align="center"><font color=black>108</font></td><td  align="center"><font color=black>3+108=111</font></td></tr><tr><td  align="center"><font color=black>4</font></td><td  align="center"><font color=black>81</font></td><td  align="center"><font color=black>4+81=85</font></td></tr><tr><td  align="center"><font color=black>6</font></td><td  align="center"><font color=black>54</font></td><td  align="center"><font color=black>6+54=60</font></td></tr><tr><td  align="center"><font color=black>9</font></td><td  align="center"><font color=black>36</font></td><td  align="center"><font color=black>9+36=45</font></td></tr><tr><td  align="center"><font color=black>12</font></td><td  align="center"><font color=black>27</font></td><td  align="center"><font color=black>12+27=39</font></td></tr><tr><td  align="center"><font color=black>18</font></td><td  align="center"><font color=black>18</font></td><td  align="center"><font color=black>18+18=36</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>-324</font></td><td  align="center"><font color=black>-1+(-324)=-325</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>-162</font></td><td  align="center"><font color=black>-2+(-162)=-164</font></td></tr><tr><td  align="center"><font color=black>-3</font></td><td  align="center"><font color=black>-108</font></td><td  align="center"><font color=black>-3+(-108)=-111</font></td></tr><tr><td  align="center"><font color=black>-4</font></td><td  align="center"><font color=black>-81</font></td><td  align="center"><font color=black>-4+(-81)=-85</font></td></tr><tr><td  align="center"><font color=black>-6</font></td><td  align="center"><font color=black>-54</font></td><td  align="center"><font color=black>-6+(-54)=-60</font></td></tr><tr><td  align="center"><font color=black>-9</font></td><td  align="center"><font color=black>-36</font></td><td  align="center"><font color=black>-9+(-36)=-45</font></td></tr><tr><td  align="center"><font color=black>-12</font></td><td  align="center"><font color=black>-27</font></td><td  align="center"><font color=black>-12+(-27)=-39</font></td></tr><tr><td  align="center"><font color=red>-18</font></td><td  align="center"><font color=red>-18</font></td><td  align="center"><font color=red>-18+(-18)=-36</font></td></tr></table>



From the table, we can see that the two numbers {{{-18}}} and {{{-18}}} add to {{{-36}}} (the middle coefficient).



So the two numbers {{{-18}}} and {{{-18}}} both multiply to {{{324}}} <font size=4><b>and</b></font> add to {{{-36}}}



Now replace the middle term {{{-36x}}} with {{{-18x-18x}}}. Remember, {{{-18}}} and {{{-18}}} add to {{{-36}}}. So this shows us that {{{-18x-18x=-36x}}}.



{{{4x^2+highlight(-18x-18x)+81}}} Replace the second term {{{-36x}}} with {{{-18x-18x}}}.



{{{(4x^2-18x)+(-18x+81)}}} Group the terms into two pairs.



{{{2x(2x-9)+(-18x+81)}}} Factor out the GCF {{{2x}}} from the first group.



{{{2x(2x-9)-9(2x-9)}}} Factor out {{{9}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(2x-9)(2x-9)}}} Combine like terms. Or factor out the common term {{{2x-9}}}



{{{(2x-9)^2}}} Condense the terms.



===============================================================



Answer:



So {{{4x^2+81-36x}}} factors to {{{(2x-9)^2}}}.



In other words, {{{4x^2+81-36x=(2x-9)^2}}}.



Note: you can check the answer by expanding {{{(2x-9)^2}}} to get {{{4x^2-36x+81}}} or by graphing the original expression and the answer (the two graphs should be identical).