Question 251553
I'm not sure what you mean by the box method, but here's one way to do it.




Looking at the expression {{{5x^2-42x+16}}}, we can see that the first coefficient is {{{5}}}, the second coefficient is {{{-42}}}, and the last term is {{{16}}}.



Now multiply the first coefficient {{{5}}} by the last term {{{16}}} to get {{{(5)(16)=80}}}.



Now the question is: what two whole numbers multiply to {{{80}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{-42}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{80}}} (the previous product).



Factors of {{{80}}}:

1,2,4,5,8,10,16,20,40,80

-1,-2,-4,-5,-8,-10,-16,-20,-40,-80



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{80}}}.

1*80 = 80
2*40 = 80
4*20 = 80
5*16 = 80
8*10 = 80
(-1)*(-80) = 80
(-2)*(-40) = 80
(-4)*(-20) = 80
(-5)*(-16) = 80
(-8)*(-10) = 80


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{-42}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>80</font></td><td  align="center"><font color=black>1+80=81</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>40</font></td><td  align="center"><font color=black>2+40=42</font></td></tr><tr><td  align="center"><font color=black>4</font></td><td  align="center"><font color=black>20</font></td><td  align="center"><font color=black>4+20=24</font></td></tr><tr><td  align="center"><font color=black>5</font></td><td  align="center"><font color=black>16</font></td><td  align="center"><font color=black>5+16=21</font></td></tr><tr><td  align="center"><font color=black>8</font></td><td  align="center"><font color=black>10</font></td><td  align="center"><font color=black>8+10=18</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>-80</font></td><td  align="center"><font color=black>-1+(-80)=-81</font></td></tr><tr><td  align="center"><font color=red>-2</font></td><td  align="center"><font color=red>-40</font></td><td  align="center"><font color=red>-2+(-40)=-42</font></td></tr><tr><td  align="center"><font color=black>-4</font></td><td  align="center"><font color=black>-20</font></td><td  align="center"><font color=black>-4+(-20)=-24</font></td></tr><tr><td  align="center"><font color=black>-5</font></td><td  align="center"><font color=black>-16</font></td><td  align="center"><font color=black>-5+(-16)=-21</font></td></tr><tr><td  align="center"><font color=black>-8</font></td><td  align="center"><font color=black>-10</font></td><td  align="center"><font color=black>-8+(-10)=-18</font></td></tr></table>



From the table, we can see that the two numbers {{{-2}}} and {{{-40}}} add to {{{-42}}} (the middle coefficient).



So the two numbers {{{-2}}} and {{{-40}}} both multiply to {{{80}}} <font size=4><b>and</b></font> add to {{{-42}}}



Now replace the middle term {{{-42x}}} with {{{-2x-40x}}}. Remember, {{{-2}}} and {{{-40}}} add to {{{-42}}}. So this shows us that {{{-2x-40x=-42x}}}.



{{{5x^2+highlight(-2x-40x)+16}}} Replace the second term {{{-42x}}} with {{{-2x-40x}}}.



{{{(5x^2-2x)+(-40x+16)}}} Group the terms into two pairs.



{{{x(5x-2)+(-40x+16)}}} Factor out the GCF {{{x}}} from the first group.



{{{x(5x-2)-8(5x-2)}}} Factor out {{{8}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(x-8)(5x-2)}}} Combine like terms. Or factor out the common term {{{5x-2}}}



===============================================================



Answer:



So {{{5x^2-42x+16}}} factors to {{{(x-8)(5x-2)}}}.



In other words, {{{5x^2-42x+16=(x-8)(5x-2)}}}.



Note: you can check the answer by expanding {{{(x-8)(5x-2)}}} to get {{{5x^2-42x+16}}} or by graphing the original expression and the answer (the two graphs should be identical).