Question 249950


{{{(3x+8)(2x+1)}}} Start with the given expression.



Now let's FOIL the expression.



Remember, when you FOIL an expression, you follow this procedure:



{{{(highlight(3x)+8)(highlight(2x)+1)}}} Multiply the <font color="red">F</font>irst terms:{{{(3*x)*(2*x)=6*x^2}}}.



{{{(highlight(3x)+8)(2x+highlight(1))}}} Multiply the <font color="red">O</font>uter terms:{{{(3*x)*(1)=3*x}}}.



{{{(3x+highlight(8))(highlight(2x)+1)}}} Multiply the <font color="red">I</font>nner terms:{{{(8)*(2*x)=16*x}}}.



{{{(3x+highlight(8))(2x+highlight(1))}}} Multiply the <font color="red">L</font>ast terms:{{{(8)*(1)=8}}}.



---------------------------------------------------

So we have the terms: {{{6*x^2}}}, {{{3*x}}}, {{{16*x}}}, {{{8}}} 



{{{6*x^2+3*x+16*x+8}}} Now add every term listed above to make a single expression.



{{{6*x^2+19*x+8}}} Now combine like terms.



So {{{(3x+8)(2x+1)}}} FOILs to {{{6*x^2+19*x+8}}}.



In other words, {{{(3x+8)(2x+1)=6*x^2+19*x+8}}}.