Question 249022
{{{(49*sqrt(14))/(21*sqrt(3))}}} Start with the given expression.



{{{(7*sqrt(14))/(3*sqrt(3))}}} Reduce {{{49/21}}} to get {{{7/9}}}



{{{(7*sqrt(14)*sqrt(3))/(3*sqrt(3)*sqrt(3))}}} Multiply both the numerator and denominator by {{{sqrt(3)}}}



{{{(7*sqrt(14)*sqrt(3))/(3*3)}}} Multiply {{{sqrt(3)}}} by {{{sqrt(3)}}} to get {{{sqrt(3)*sqrt(3)=sqrt(3*3)=sqrt(3^2)=3}}}



{{{(7*sqrt(14)*sqrt(3))/9}}} Multiply 3 and 3 to get 9



{{{(7*sqrt(14*3))/9}}} Combine the roots using the identity {{{sqrt(x)*sqrt(y)=sqrt(x*y)}}}



{{{(7*sqrt(42))/9}}} Multiply 14 and 3 to get 42



So {{{(49*sqrt(14))/(21*sqrt(3))=(7*sqrt(42))/9}}}