Question 248816


{{{12x^2-10x-42}}} Start with the given expression.



{{{2(6x^2-5x-21)}}} Factor out the GCF {{{2}}}.



Now let's try to factor the inner expression {{{6x^2-5x-21}}}



---------------------------------------------------------------



Looking at the expression {{{6x^2-5x-21}}}, we can see that the first coefficient is {{{6}}}, the second coefficient is {{{-5}}}, and the last term is {{{-21}}}.



Now multiply the first coefficient {{{6}}} by the last term {{{-21}}} to get {{{(6)(-21)=-126}}}.



Now the question is: what two whole numbers multiply to {{{-126}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{-5}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{-126}}} (the previous product).



Factors of {{{-126}}}:

1,2,3,6,7,9,14,18,21,42,63,126

-1,-2,-3,-6,-7,-9,-14,-18,-21,-42,-63,-126



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{-126}}}.

1*(-126) = -126
2*(-63) = -126
3*(-42) = -126
6*(-21) = -126
7*(-18) = -126
9*(-14) = -126
(-1)*(126) = -126
(-2)*(63) = -126
(-3)*(42) = -126
(-6)*(21) = -126
(-7)*(18) = -126
(-9)*(14) = -126


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{-5}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>-126</font></td><td  align="center"><font color=black>1+(-126)=-125</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>-63</font></td><td  align="center"><font color=black>2+(-63)=-61</font></td></tr><tr><td  align="center"><font color=black>3</font></td><td  align="center"><font color=black>-42</font></td><td  align="center"><font color=black>3+(-42)=-39</font></td></tr><tr><td  align="center"><font color=black>6</font></td><td  align="center"><font color=black>-21</font></td><td  align="center"><font color=black>6+(-21)=-15</font></td></tr><tr><td  align="center"><font color=black>7</font></td><td  align="center"><font color=black>-18</font></td><td  align="center"><font color=black>7+(-18)=-11</font></td></tr><tr><td  align="center"><font color=red>9</font></td><td  align="center"><font color=red>-14</font></td><td  align="center"><font color=red>9+(-14)=-5</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>126</font></td><td  align="center"><font color=black>-1+126=125</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>63</font></td><td  align="center"><font color=black>-2+63=61</font></td></tr><tr><td  align="center"><font color=black>-3</font></td><td  align="center"><font color=black>42</font></td><td  align="center"><font color=black>-3+42=39</font></td></tr><tr><td  align="center"><font color=black>-6</font></td><td  align="center"><font color=black>21</font></td><td  align="center"><font color=black>-6+21=15</font></td></tr><tr><td  align="center"><font color=black>-7</font></td><td  align="center"><font color=black>18</font></td><td  align="center"><font color=black>-7+18=11</font></td></tr><tr><td  align="center"><font color=black>-9</font></td><td  align="center"><font color=black>14</font></td><td  align="center"><font color=black>-9+14=5</font></td></tr></table>



From the table, we can see that the two numbers {{{9}}} and {{{-14}}} add to {{{-5}}} (the middle coefficient).



So the two numbers {{{9}}} and {{{-14}}} both multiply to {{{-126}}} <font size=4><b>and</b></font> add to {{{-5}}}



Now replace the middle term {{{-5x}}} with {{{9x-14x}}}. Remember, {{{9}}} and {{{-14}}} add to {{{-5}}}. So this shows us that {{{9x-14x=-5x}}}.



{{{6x^2+highlight(9x-14x)-21}}} Replace the second term {{{-5x}}} with {{{9x-14x}}}.



{{{(6x^2+9x)+(-14x-21)}}} Group the terms into two pairs.



{{{3x(2x+3)+(-14x-21)}}} Factor out the GCF {{{3x}}} from the first group.



{{{3x(2x+3)-7(2x+3)}}} Factor out {{{7}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(3x-7)(2x+3)}}} Combine like terms. Or factor out the common term {{{2x+3}}}



--------------------------------------------------



So {{{2(6x^2-5x-21)}}} then factors further to {{{2(3x-7)(2x+3)}}}



===============================================================



Answer:



So {{{12x^2-10x-42}}} completely factors to {{{2(3x-7)(2x+3)}}}.



In other words, {{{12x^2-10x-42=2(3x-7)(2x+3)}}}.



Note: you can check the answer by expanding {{{2(3x-7)(2x+3)}}} to get {{{12x^2-10x-42}}} or by graphing the original expression and the answer (the two graphs should be identical).