Question 246704


{{{sqrt(250*x^9*y^4 )}}} Start with the given expression.



{{{sqrt(25*10*x^9*y^4 )}}} Factor {{{250}}} into {{{25*10}}}



{{{sqrt(25*10*x^2*x^2*x^2*x^2*x*y^4 )}}} Factor {{{x^9}}} into {{{x^2*x^2*x^2*x^2*x}}}



{{{sqrt(25*10*x^2*x^2*x^2*x^2*x*y^2*y^2)}}} Factor {{{y^4 }}} into {{{y^2*y^2}}}



{{{sqrt(25)*sqrt(10)*sqrt(x^2)*sqrt(x^2)*sqrt(x^2)*sqrt(x^2)*sqrt(x)*sqrt(y^2)*sqrt(y^2)}}} Break up the square root using the identity {{{sqrt(A*B)=sqrt(A)*sqrt(B)}}}.



{{{5*sqrt(10)*sqrt(x^2)*sqrt(x^2)*sqrt(x^2)*sqrt(x^2)*sqrt(x)*sqrt(y^2)*sqrt(y^2)}}} Take the square root of {{{25}}} to get {{{5}}}.



{{{5*sqrt(10)*x*x*x*x*sqrt(x)*sqrt(y^2)*sqrt(y^2)}}} Take the square root of {{{x^2}}} to get {{{x}}}.



{{{5*sqrt(10)*x*x*x*x*sqrt(x)*y*y}}} Take the square root of {{{y^2}}} to get {{{y}}}.



{{{5x^4y^2*sqrt(10x)}}} Rearrange and multiply the terms.


==================================================


Answer:



So {{{sqrt(250*x^9*y^4 )}}} simplifies to {{{5x^4y^2*sqrt(10x)}}}



In other words, {{{sqrt(250*x^9*y^4 )=5x^4y^2*sqrt(10x)}}} where every variable is non-negative.