Question 245969


Looking at the expression {{{7a^2+53a+28}}}, we can see that the first coefficient is {{{7}}}, the second coefficient is {{{53}}}, and the last term is {{{28}}}.



Now multiply the first coefficient {{{7}}} by the last term {{{28}}} to get {{{(7)(28)=196}}}.



Now the question is: what two whole numbers multiply to {{{196}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{53}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{196}}} (the previous product).



Factors of {{{196}}}:

1,2,4,7,14,28,49,98,196

-1,-2,-4,-7,-14,-28,-49,-98,-196



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{196}}}.

1*196 = 196
2*98 = 196
4*49 = 196
7*28 = 196
14*14 = 196
(-1)*(-196) = 196
(-2)*(-98) = 196
(-4)*(-49) = 196
(-7)*(-28) = 196
(-14)*(-14) = 196


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{53}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>196</font></td><td  align="center"><font color=black>1+196=197</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>98</font></td><td  align="center"><font color=black>2+98=100</font></td></tr><tr><td  align="center"><font color=red>4</font></td><td  align="center"><font color=red>49</font></td><td  align="center"><font color=red>4+49=53</font></td></tr><tr><td  align="center"><font color=black>7</font></td><td  align="center"><font color=black>28</font></td><td  align="center"><font color=black>7+28=35</font></td></tr><tr><td  align="center"><font color=black>14</font></td><td  align="center"><font color=black>14</font></td><td  align="center"><font color=black>14+14=28</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>-196</font></td><td  align="center"><font color=black>-1+(-196)=-197</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>-98</font></td><td  align="center"><font color=black>-2+(-98)=-100</font></td></tr><tr><td  align="center"><font color=black>-4</font></td><td  align="center"><font color=black>-49</font></td><td  align="center"><font color=black>-4+(-49)=-53</font></td></tr><tr><td  align="center"><font color=black>-7</font></td><td  align="center"><font color=black>-28</font></td><td  align="center"><font color=black>-7+(-28)=-35</font></td></tr><tr><td  align="center"><font color=black>-14</font></td><td  align="center"><font color=black>-14</font></td><td  align="center"><font color=black>-14+(-14)=-28</font></td></tr></table>



From the table, we can see that the two numbers {{{4}}} and {{{49}}} add to {{{53}}} (the middle coefficient).



So the two numbers {{{4}}} and {{{49}}} both multiply to {{{196}}} <font size=4><b>and</b></font> add to {{{53}}}



Now replace the middle term {{{53a}}} with {{{4a+49a}}}. Remember, {{{4}}} and {{{49}}} add to {{{53}}}. So this shows us that {{{4a+49a=53a}}}.



{{{7a^2+highlight(4a+49a)+28}}} Replace the second term {{{53a}}} with {{{4a+49a}}}.



{{{(7a^2+4a)+(49a+28)}}} Group the terms into two pairs.



{{{a(7a+4)+(49a+28)}}} Factor out the GCF {{{a}}} from the first group.



{{{a(7a+4)+7(7a+4)}}} Factor out {{{7}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(a+7)(7a+4)}}} Combine like terms. Or factor out the common term {{{7a+4}}}



===============================================================



Answer:



So {{{7a^2+53a+28}}} factors to {{{(a+7)(7a+4)}}}.



In other words, {{{7a^2+53a+28=(a+7)(7a+4)}}}.



Note: you can check the answer by expanding {{{(a+7)(7a+4)}}} to get {{{7a^2+53a+28}}} or by graphing the original expression and the answer (the two graphs should be identical).