Question 245863
A quadratic equation would look like this:  {{{Ax^2+Bx+C=0}}}
And a quadratic formula would look like this: {{{x=(-b+-sqrt(b^2-4ac))/2a}}}
.
So, for the following quadratic equation: {{{4x^2+48x+104=0}}}
Its quadratic formula would be:
{{{x=(-48+-sqrt(48^2-(4(4*104))))/(2*4)}}}
Now work the algebra and solve for x:
{{{x=(-48+-sqrt(48^2-(4(416))))/(8)}}}
.
{{{x=(-48+-sqrt(48^2-1664))/(8)}}}
.
{{{x=(-48+-sqrt(2304-1664))/(8)}}}
.
{{{x=(-48+-sqrt(640))/(8)}}}
.
Notice -48/8=-6, so:
.
{{{x=-6+-sqrt(640)}}}
.
{{{x=-6+-sqrt(64*10)}}}
.
{{{x=-6+8sqrt(10)}}} ...and... {{{x=-6-8sqrt(10)}}}
.
We may simplify them further if you want to use decimals.
If so, use your calculator to find the square root of 10 and perform the math.
Otherwise, the above answers would suffice.  :)