Question 244806


From {{{2x^2-10x-12}}} we can see that {{{a=2}}}, {{{b=-10}}}, and {{{c=-12}}}



{{{D=b^2-4ac}}} Start with the discriminant formula.



{{{D=(-10)^2-4(2)(-12)}}} Plug in {{{a=2}}}, {{{b=-10}}}, and {{{c=-12}}}



{{{D=100-4(2)(-12)}}} Square {{{-10}}} to get {{{100}}}



{{{D=100--96}}} Multiply {{{4(2)(-12)}}} to get {{{(8)(-12)=-96}}}



{{{D=100+96}}} Rewrite {{{D=100--96}}} as {{{D=100+96}}}



{{{D=196}}} Add {{{100}}} to {{{96}}} to get {{{196}}}



Since the discriminant is greater than zero, this means that there are two real solutions.