Question 244621


Looking at the expression {{{9x^2-6x-8}}}, we can see that the first coefficient is {{{9}}}, the second coefficient is {{{-6}}}, and the last term is {{{-8}}}.



Now multiply the first coefficient {{{9}}} by the last term {{{-8}}} to get {{{(9)(-8)=-72}}}.



Now the question is: what two whole numbers multiply to {{{-72}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{-6}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{-72}}} (the previous product).



Factors of {{{-72}}}:

1,2,3,4,6,8,9,12,18,24,36,72

-1,-2,-3,-4,-6,-8,-9,-12,-18,-24,-36,-72



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{-72}}}.

1*(-72) = -72
2*(-36) = -72
3*(-24) = -72
4*(-18) = -72
6*(-12) = -72
8*(-9) = -72
(-1)*(72) = -72
(-2)*(36) = -72
(-3)*(24) = -72
(-4)*(18) = -72
(-6)*(12) = -72
(-8)*(9) = -72


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{-6}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>-72</font></td><td  align="center"><font color=black>1+(-72)=-71</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>-36</font></td><td  align="center"><font color=black>2+(-36)=-34</font></td></tr><tr><td  align="center"><font color=black>3</font></td><td  align="center"><font color=black>-24</font></td><td  align="center"><font color=black>3+(-24)=-21</font></td></tr><tr><td  align="center"><font color=black>4</font></td><td  align="center"><font color=black>-18</font></td><td  align="center"><font color=black>4+(-18)=-14</font></td></tr><tr><td  align="center"><font color=red>6</font></td><td  align="center"><font color=red>-12</font></td><td  align="center"><font color=red>6+(-12)=-6</font></td></tr><tr><td  align="center"><font color=black>8</font></td><td  align="center"><font color=black>-9</font></td><td  align="center"><font color=black>8+(-9)=-1</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>72</font></td><td  align="center"><font color=black>-1+72=71</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>36</font></td><td  align="center"><font color=black>-2+36=34</font></td></tr><tr><td  align="center"><font color=black>-3</font></td><td  align="center"><font color=black>24</font></td><td  align="center"><font color=black>-3+24=21</font></td></tr><tr><td  align="center"><font color=black>-4</font></td><td  align="center"><font color=black>18</font></td><td  align="center"><font color=black>-4+18=14</font></td></tr><tr><td  align="center"><font color=black>-6</font></td><td  align="center"><font color=black>12</font></td><td  align="center"><font color=black>-6+12=6</font></td></tr><tr><td  align="center"><font color=black>-8</font></td><td  align="center"><font color=black>9</font></td><td  align="center"><font color=black>-8+9=1</font></td></tr></table>



From the table, we can see that the two numbers {{{6}}} and {{{-12}}} add to {{{-6}}} (the middle coefficient).



So the two numbers {{{6}}} and {{{-12}}} both multiply to {{{-72}}} <font size=4><b>and</b></font> add to {{{-6}}}



Now replace the middle term {{{-6x}}} with {{{6x-12x}}}. Remember, {{{6}}} and {{{-12}}} add to {{{-6}}}. So this shows us that {{{6x-12x=-6x}}}.



{{{9x^2+highlight(6x-12x)-8}}} Replace the second term {{{-6x}}} with {{{6x-12x}}}.



{{{(9x^2+6x)+(-12x-8)}}} Group the terms into two pairs.



{{{3x(3x+2)+(-12x-8)}}} Factor out the GCF {{{3x}}} from the first group.



{{{3x(3x+2)-4(3x+2)}}} Factor out {{{4}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(3x-4)(3x+2)}}} Combine like terms. Or factor out the common term {{{3x+2}}}



===============================================================



Answer:



So {{{9x^2-6x-8}}} factors to {{{(3x-4)(3x+2)}}}.



In other words, {{{9x^2-6x-8=(3x-4)(3x+2)}}}.



Note: you can check the answer by expanding {{{(3x-4)(3x+2)}}} to get {{{9x^2-6x-8}}} or by graphing the original expression and the answer (the two graphs should be identical).