Question 244026


Looking at the expression {{{10z^2-17z+3}}}, we can see that the first coefficient is {{{10}}}, the second coefficient is {{{-17}}}, and the last term is {{{3}}}.



Now multiply the first coefficient {{{10}}} by the last term {{{3}}} to get {{{(10)(3)=30}}}.



Now the question is: what two whole numbers multiply to {{{30}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{-17}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{30}}} (the previous product).



Factors of {{{30}}}:

1,2,3,5,6,10,15,30

-1,-2,-3,-5,-6,-10,-15,-30



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{30}}}.

1*30
2*15
3*10
5*6
(-1)*(-30)
(-2)*(-15)
(-3)*(-10)
(-5)*(-6)


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{-17}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>30</font></td><td  align="center"><font color=black>1+30=31</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>15</font></td><td  align="center"><font color=black>2+15=17</font></td></tr><tr><td  align="center"><font color=black>3</font></td><td  align="center"><font color=black>10</font></td><td  align="center"><font color=black>3+10=13</font></td></tr><tr><td  align="center"><font color=black>5</font></td><td  align="center"><font color=black>6</font></td><td  align="center"><font color=black>5+6=11</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>-30</font></td><td  align="center"><font color=black>-1+(-30)=-31</font></td></tr><tr><td  align="center"><font color=red>-2</font></td><td  align="center"><font color=red>-15</font></td><td  align="center"><font color=red>-2+(-15)=-17</font></td></tr><tr><td  align="center"><font color=black>-3</font></td><td  align="center"><font color=black>-10</font></td><td  align="center"><font color=black>-3+(-10)=-13</font></td></tr><tr><td  align="center"><font color=black>-5</font></td><td  align="center"><font color=black>-6</font></td><td  align="center"><font color=black>-5+(-6)=-11</font></td></tr></table>



From the table, we can see that the two numbers {{{-2}}} and {{{-15}}} add to {{{-17}}} (the middle coefficient).



So the two numbers {{{-2}}} and {{{-15}}} both multiply to {{{30}}} <font size=4><b>and</b></font> add to {{{-17}}}



Now replace the middle term {{{-17z}}} with {{{-2z-15z}}}. Remember, {{{-2}}} and {{{-15}}} add to {{{-17}}}. So this shows us that {{{-2z-15z=-17z}}}.



{{{10z^2+highlight(-2z-15z)+3}}} Replace the second term {{{-17z}}} with {{{-2z-15z}}}.



{{{(10z^2-2z)+(-15z+3)}}} Group the terms into two pairs.



{{{2z(5z-1)+(-15z+3)}}} Factor out the GCF {{{2z}}} from the first group.



{{{2z(5z-1)-3(5z-1)}}} Factor out {{{3}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(2z-3)(5z-1)}}} Combine like terms. Or factor out the common term {{{5z-1}}}


---------------------------------------------



Answer:



So {{{10z^2-17z+3}}} factors to {{{(2z-3)(5z-1)}}}.



Note: you can check the answer by FOILing {{{(2z-3)(5z-1)}}} to get {{{10z^2-17z+3}}} or by graphing the original expression and the answer (the two graphs should be identical).