Question 244032
Are you sure that the exponents aren't twos? The cubics that you've written out aren't factorable.



If the first one is {{{7x^2-15x+2}}}, then 



Looking at the expression {{{7x^2-15x+2}}}, we can see that the first coefficient is {{{7}}}, the second coefficient is {{{-15}}}, and the last term is {{{2}}}.



Now multiply the first coefficient {{{7}}} by the last term {{{2}}} to get {{{(7)(2)=14}}}.



Now the question is: what two whole numbers multiply to {{{14}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{-15}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{14}}} (the previous product).



Factors of {{{14}}}:

1,2,7,14

-1,-2,-7,-14



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{14}}}.

1*14
2*7
(-1)*(-14)
(-2)*(-7)


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{-15}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>14</font></td><td  align="center"><font color=black>1+14=15</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>7</font></td><td  align="center"><font color=black>2+7=9</font></td></tr><tr><td  align="center"><font color=red>-1</font></td><td  align="center"><font color=red>-14</font></td><td  align="center"><font color=red>-1+(-14)=-15</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>-7</font></td><td  align="center"><font color=black>-2+(-7)=-9</font></td></tr></table>



From the table, we can see that the two numbers {{{-1}}} and {{{-14}}} add to {{{-15}}} (the middle coefficient).



So the two numbers {{{-1}}} and {{{-14}}} both multiply to {{{14}}} <font size=4><b>and</b></font> add to {{{-15}}}



Now replace the middle term {{{-15x}}} with {{{-x-14x}}}. Remember, {{{-1}}} and {{{-14}}} add to {{{-15}}}. So this shows us that {{{-x-14x=-15x}}}.



{{{7x^2+highlight(-x-14x)+2}}} Replace the second term {{{-15x}}} with {{{-x-14x}}}.



{{{(7x^2-x)+(-14x+2)}}} Group the terms into two pairs.



{{{x(7x-1)+(-14x+2)}}} Factor out the GCF {{{x}}} from the first group.



{{{x(7x-1)-2(7x-1)}}} Factor out {{{2}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(x-2)(7x-1)}}} Combine like terms. Or factor out the common term {{{7x-1}}}


---------------------------------------------



Answer:



So {{{7x^2-15x+2}}} factors to {{{(x-2)(7x-1)}}}.



Note: you can check the answer by FOILing {{{(x-2)(7x-1)}}} to get {{{7x^2-15x+2}}} or by graphing the original expression and the answer (the two graphs should be identical).




As for the other one, let me know if you still need help.