Question 243572
{{{sqrt(12x^5)-sqrt(18x)-sqrt(300x^5)+sqrt(98x)}}} Start with the given expression



{{{2x^2*sqrt(3x)-sqrt(18x)-sqrt(300x^5)+sqrt(98x)}}} Simplify {{{sqrt(12x^5)}}} to get {{{2x^2*sqrt(3x)}}}



{{{2x^2*sqrt(3x)-3*sqrt(2x)-sqrt(300x^5)+sqrt(98x)}}} Simplify {{{sqrt(18x)}}} to get {{{3*sqrt(2x)}}}



{{{2x^2*sqrt(3x)-3*sqrt(2x)-10x^2*sqrt(3x)+sqrt(98x)}}} Simplify {{{sqrt(300x^5)}}} to get {{{10x^2*sqrt(3x)}}}



{{{2x^2*sqrt(3x)-3*sqrt(2x)-10x^2*sqrt(3x)+7*sqrt(2x)}}} Simplify {{{sqrt(98x)}}} to get {{{7*sqrt(2x)}}}



{{{-8x^2*sqrt(3x)+4*sqrt(2x)}}} Combine like terms.


----------------------------------------------------


Answer:



So {{{sqrt(12x^5)-sqrt(18x)-sqrt(300x^5)+sqrt(98x)=-8x^2*sqrt(3x)+4*sqrt(2x)}}} where {{{x>=0}}}