Question 242325
Solve
{{{5^(x+2)}}} = {{{4^(l-x)}}}
Use logs
{{{log(5^(x+2))}}} = {{{log(4^(l-x))}}}
log equiv of exponents
{{{(x+2)*log(5)}}} = {{{(1-x)*log(4)}}}
Find the logs
.69897(x+2) = .60206(1-x)
:
.69897x + 1.39794 = .602061 - .60206x
:
.69897x + .60206x = .602061 - 1.39794
:
1.30103x = -.79588
:
x = {{{(-.79588)/1.30103}}}
x = -.61173
:
:
Check solution on calc:
enter 5^(-.61173+2) = 9.34
enter 4^(1-(-.61173)) = 9.34; confirms our solution