Question 241588
{{{(a7/-7b^4)^6}}} Is that a7 a^7?
= {{{(a^7/7b^4)^6}}} for some reason the minus sign caused a problem
= {{{a^42/117649b^24}}}
-------------
Note:  by convention, {{{0^0 = 1}}}
-----------------------
The following is a list of reasons why 0^0 should be 1. 


Rotando & Korn show that if f and g are real functions that vanish at the origin and are analytic at 0 (infinitely differentiable is not sufficient), then f(x)^g(x) approaches 1 as x approaches 0 from the right. 
From Concrete Mathematics p.162 (R. Graham, D. Knuth, O. Patashnik): 


Some textbooks leave the quantity 0^0 undefined, because the functions 0^x and x^0 have different limiting values when x decreases to 0. But this is a mistake. We must define x^0=1 for all x , if the binomial theorem is to be valid when x=0 , y=0 , and/or x=-y . The theorem is too important to be arbitrarily restricted! By contrast, the function 0^x is quite unimportant. 
Published by Addison-Wesley, 2nd printing Dec, 1988. 


As a rule of thumb, one can say that 0^0 = 1 , but 0.0^(0.0) is undefined, meaning that when approaching from a different direction there is no clearly predetermined value to assign to 0.0^(0.0) ; but Kahan has argued that 0.0^(0.0) should be 1, because if f(x), g(x) --> 0 as x approaches some limit, and f(x) and g(x) are analytic functions, then f(x)^g(x) --> 1 . 
The discussion of 0^0 is very old. Euler argues for 0^0 = 1 since a^0 = 1 for a not equal to 0 . The controversy raged throughout the nineteenth century, but was mainly conducted in the pages of the lesser journals: Grunert's Archiv and Schlomilch's Zeitshrift. Consensus has recently been built around setting the value of 0^0 = 1 .