Question 240201
<font face="Garamond" size="+2">


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ i^0\ =\ 1\ \ \ ] Anything to the zero power is 1 by definition.


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ i^1\ =\ i\ \ \ ] Anything to the 1 power is itself.


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ i^2\ =\ -1\ \ \ ] Definition of i


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ i^3\ =\ i^2\,\cdot\,i\ = -1\,\cdot\,i\ =\ -i]


The  <b>mod</b> function returns the remainder from integer division.  *[tex \Large m \text{ mod } n] is the remainder when *[tex \Large m] is divided by *[tex \Large n].


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ i^n\ =\ i^{n \text{ mod } 4}]



John
*[tex \LARGE e^{i\pi} + 1 = 0]
</font>