Question 223004
If the original problem is {{{23=3ln(x-1)+14}}} and your answer is {{{x=e^3+1}}}, then you are correct.


Check:


{{{23=3ln(x-1)+14}}} Start with the given equation



{{{23=3ln(e^3+1-1)+14}}} Plug in {{{x=e^3+1}}}



{{{23=3ln(e^3)+14}}} Combine like terms.



{{{23=3*3ln(e)+14}}} Pull down the exponent.



{{{23=3*3(1)+14}}} Evaluate the natural log of 'e' to get 1.



{{{23=9+14}}} Multiply



{{{23=23}}} Add. Since the equation is true, this verifies the solution.