Question 221654

<a name="top">

<a href="#ans">Jump to Answer</a>



Looking at the expression {{{5w^2-18w+9}}}, we can see that the first coefficient is {{{5}}}, the second coefficient is {{{-18}}}, and the last term is {{{9}}}.



Now multiply the first coefficient {{{5}}} by the last term {{{9}}} to get {{{(5)(9)=45}}}.



Now the question is: what two whole numbers multiply to {{{45}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{-18}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{45}}} (the previous product).



Factors of {{{45}}}:

1,3,5,9,15,45

-1,-3,-5,-9,-15,-45



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{45}}}.

1*45 = 45
3*15 = 45
5*9 = 45
(-1)*(-45) = 45
(-3)*(-15) = 45
(-5)*(-9) = 45


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{-18}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>45</font></td><td  align="center"><font color=black>1+45=46</font></td></tr><tr><td  align="center"><font color=black>3</font></td><td  align="center"><font color=black>15</font></td><td  align="center"><font color=black>3+15=18</font></td></tr><tr><td  align="center"><font color=black>5</font></td><td  align="center"><font color=black>9</font></td><td  align="center"><font color=black>5+9=14</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>-45</font></td><td  align="center"><font color=black>-1+(-45)=-46</font></td></tr><tr><td  align="center"><font color=red>-3</font></td><td  align="center"><font color=red>-15</font></td><td  align="center"><font color=red>-3+(-15)=-18</font></td></tr><tr><td  align="center"><font color=black>-5</font></td><td  align="center"><font color=black>-9</font></td><td  align="center"><font color=black>-5+(-9)=-14</font></td></tr></table>



From the table, we can see that the two numbers {{{-3}}} and {{{-15}}} add to {{{-18}}} (the middle coefficient).



So the two numbers {{{-3}}} and {{{-15}}} both multiply to {{{45}}} <font size=4><b>and</b></font> add to {{{-18}}}



Now replace the middle term {{{-18w}}} with {{{-3w-15w}}}. Remember, {{{-3}}} and {{{-15}}} add to {{{-18}}}. So this shows us that {{{-3w-15w=-18w}}}.



{{{5w^2+highlight(-3w-15w)+9}}} Replace the second term {{{-18w}}} with {{{-3w-15w}}}.



{{{(5w^2-3w)+(-15w+9)}}} Group the terms into two pairs.



{{{w(5w-3)+(-15w+9)}}} Factor out the GCF {{{w}}} from the first group.



{{{w(5w-3)-3(5w-3)}}} Factor out {{{3}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(w-3)(5w-3)}}} Combine like terms. Or factor out the common term {{{5w-3}}}



===============================================================


<a name="ans">


Answer:



So {{{5w^2-18w+9}}} factors to {{{(w-3)(5w-3)}}}.



In other words, {{{5w^2-18w+9=(w-3)(5w-3)}}}.



Note: you can check the answer by expanding {{{(w-3)(5w-3)}}} to get {{{5w^2-18w+9}}} or by graphing the original expression and the answer (the two graphs should be identical).


<a href="#top">Jump to Top</a>