Question 219532
{{{(x^4-4x^2-5)(x^2-x+2)}}} Start with the given expression.



{{{x^4(x^2-x+2)-4x^2(x^2-x+2)-5(x^2-x+2)}}} Expand.



{{{(x^4)(x^2)+(x^4)(-x)+(x^4)(2)+(-4x^2)(x^2)+(-4x^2)(-x)+(-4x^2)(2)+(-5)(x^2)+(-5)(-x)+(-5)(2)}}} Distribute.



{{{x^6-x^5+2x^4-4x^4+4x^3-8x^2-5x^2+5x-10}}} Multiply.



{{{x^6-x^5-2x^4+4x^3-13x^2+5x-10}}} Now combine like terms.



 So {{{(x^4-4x^2-5)(x^2-x+2)}}} expands to {{{x^6-x^5-2x^4+4x^3-13x^2+5x-10}}}.



In other words, {{{(x^4-4x^2-5)(x^2-x+2)=x^6-x^5-2x^4+4x^3-13x^2+5x-10}}}.