Question 217820
Find the maximum area of a rectangle with a perimeter of 54 centimeters.


Step 1.  Perimeter P means adding up all 4 sides of a rectangle or P=w+w+L+L=2(w+L)  where w is the width and L is the Length.


Step 2.  Maximum Area A=w*L is when the rectangle is a square or {{{A=s^2}}}  where s=w=L.


Step 3.  So P=2(w+L)=2(s+s)=4s.  


Step 4.  P=54=4s or s=54/4=13.5.


Step 5.  {{{A=s^2=13.5^2=182.25}}}.


Step 6.  ANSWER:  Maximum area is 182.25 square centimeters.


I hope the above steps were helpful. 


For free Step-By-Step Videos on Introduction to Algebra, please visit http://www.FreedomUniversity.TV/courses/IntroAlgebra or for Trigonometry visit http://www.FreedomUniversity.TV/courses/Trigonometry.


And good luck in your studies!


Respectfully,
Dr J


drjctu@gmail.com


http://www.FreedomUniversity.TV
http://www.Facebook.com/FreedomUniversity.TV
http://www.Twitter.com/FreedomUTV