Question 216580
{{{sqrt(-13)=i*sqrt(13)=0+i*sqrt(13)}}}



The complex conjugate of any complex number {{{a+bi}}} is {{{a-bi}}}. In this case, {{{a+bi=0+i*sqrt(13)}}} which means that the conjugate is {{{a-bi=0-i*sqrt(13)}}} which can be written as {{{-sqrt(-13)}}}



Now multiply the two values to get: {{{sqrt(-13)*(-sqrt(-13))=i*sqrt(13)*(-i*sqrt(13))=-(i*i)*(sqrt(13*13))=-i^2*sqrt(169)=-(-1)*13=13}}}



So the product of the two values is 13.