Question 216560
Solve:
{{{5x^3+30x^2+45x = 0}}} First, factor the common factor of {{{5x}}}
{{{5x(x2+6x+9) = 0}}} so...
{{{5x = 0}}} or {{{x^2+6x+9 = 0}}}
If {{{5x = 0}}} then {{{x = 0}}} and...
{{{x^2+6x+9 = 0}}} Factor the trinomial.
{{{(x+3)(x+3) = 0}}} so...
{{{x+3 = 0}}} or {{{x+3 = 0}}} which means that:
{{{x = -3}}} or {{{x = -3}}} This is a "double" root.
The answer is:
{{{x = 0}}}
{{{x = -3}}}
{{{x = -3}}}
{{{graph(400,400,-5,3,-5,5,5x^3+30x^2+45x)}}}