Question 216205
{{{7a^3b-35a^2b^2+42ab^3}}} Start with the given expression.



{{{7ab(a^2-5ab+6b^2)}}} Factor out the GCF {{{7ab}}}.



Now let's try to factor the inner expression {{{a^2-5ab+6b^2}}}



---------------------------------------------------------------



Looking at the expression {{{a^2-5ab+6b^2}}}, we can see that the first coefficient is {{{1}}}, the second coefficient is {{{-5}}}, and the last coefficient is {{{6}}}.



Now multiply the first coefficient {{{1}}} by the last coefficient {{{6}}} to get {{{(1)(6)=6}}}.



Now the question is: what two whole numbers multiply to {{{6}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{-5}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{6}}} (the previous product).



Factors of {{{6}}}:

1,2,3,6

-1,-2,-3,-6



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{6}}}.

1*6 = 6
2*3 = 6
(-1)*(-6) = 6
(-2)*(-3) = 6


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{-5}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>6</font></td><td  align="center"><font color=black>1+6=7</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>3</font></td><td  align="center"><font color=black>2+3=5</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>-6</font></td><td  align="center"><font color=black>-1+(-6)=-7</font></td></tr><tr><td  align="center"><font color=red>-2</font></td><td  align="center"><font color=red>-3</font></td><td  align="center"><font color=red>-2+(-3)=-5</font></td></tr></table>



From the table, we can see that the two numbers {{{-2}}} and {{{-3}}} add to {{{-5}}} (the middle coefficient).



So the two numbers {{{-2}}} and {{{-3}}} both multiply to {{{6}}} <font size=4><b>and</b></font> add to {{{-5}}}



Now replace the middle term {{{-5ab}}} with {{{-2ab-3ab}}}. Remember, {{{-2}}} and {{{-3}}} add to {{{-5}}}. So this shows us that {{{-2ab-3ab=-5ab}}}.



{{{a^2+highlight(-2ab-3ab)+6b^2}}} Replace the second term {{{-5ab}}} with {{{-2ab-3ab}}}.



{{{(a^2-2ab)+(-3ab+6b^2)}}} Group the terms into two pairs.



{{{a(a-2b)+(-3ab+6b^2)}}} Factor out the GCF {{{a}}} from the first group.



{{{a(a-2b)-3b(a-2b)}}} Factor out the GCF {{{-3b}}} from the second group.



{{{(a-3b)(a-2b)}}} Combine like terms.



So this means that {{{a^2-5ab+6b^2}}} factors to {{{(a-3b)(a-2b)}}}


------------------------------------------------------------------



So {{{7ab(a^2-5ab+6b^2)}}} factors to {{{7ab(a-3b)(a-2b)}}}



======================================================


Answer:



So {{{7a^3b-35a^2b^2+42ab^3}}} completely factors to {{{7ab(a-3b)(a-2b)}}}