Question 214131


{{{(3a+b)(2a-5b)}}} Start with the given expression.



Now let's FOIL the expression.



Remember, when you FOIL an expression, you follow this procedure:



{{{(highlight(3a)+b)(highlight(2a)-5b)}}} Multiply the <font color="red">F</font>irst terms:{{{(3*a)*(2*a)=6*a^2}}}.



{{{(highlight(3a)+b)(2a+highlight(-5b))}}} Multiply the <font color="red">O</font>uter terms:{{{(3*a)*(-5*b)=-15*a*b}}}.



{{{(3a+highlight(b))(highlight(2a)-5b)}}} Multiply the <font color="red">I</font>nner terms:{{{(b)*(2*a)=2*a*b}}}.



{{{(3a+highlight(b))(2a+highlight(-5b))}}} Multiply the <font color="red">L</font>ast terms:{{{(b)*(-5*b)=-5*b^2}}}.



{{{6*a^2-15*a*b+2*a*b-5*b^2}}} Now collect every term to make a single expression.



{{{6*a^2-13*a*b-5*b^2}}} Now combine like terms.



So {{{(3a+b)(2a-5b)}}} FOILs to {{{6*a^2-13*a*b-5*b^2}}}.



In other words, {{{(3a+b)(2a-5b)=6*a^2-13*a*b-5*b^2}}}.