Question 213298
Find the maximum possible area of a rectangle with a perimeter of 100 feet. 
I've drawn a picture, labeled both the length and width on the rectangle, and written down the formulas for perimeter and area. 
------------------------------
Perimeter = 2(L + W)
100 = 2(L+W)
L+W = 50
---
Let width be W
Then length = 50-W
--------
Area = length * width
A = (50-W)W
A = 50W-W^2
--
This is a quadratic with a = -1, b = 50:
Maximum area occurs when W = -b/2a = -50/-2 = 25
Since W = 25 and L+W=50, L = 25
----------------
Maximum area is 25*25 = 625 sq. units
=========================================
Cheers,
Stan H.