Question 212275
Is the problem {{{2*sqrt(6^2)+6*sqrt(2^2)=c^2}}} ???



{{{2*sqrt(6^2)+6*sqrt(2^2)=c^2}}} Start with the given equation.



{{{2*6+6*sqrt(2^2)=c^2}}} Evaluate the square root of {{{6^2}}} to get 6.



{{{2*6+6*2=c^2}}} Evaluate the square root of {{{2^2}}} to get 2.



{{{12+12=c^2}}} Multiply



{{{24=c^2}}} Combine like terms.



{{{c^2=24}}} Rearrange the equation.



{{{c=""+-sqrt(24)}}} Take the square root of both sides.



{{{c=sqrt(24)}}} or {{{c=-sqrt(24)}}} Break up the 'plus/minus'



{{{c=sqrt(4*6)}}} or {{{c=-sqrt(4*6)}}} Factor 24 to get 4*6



{{{c=sqrt(4)*sqrt(6)}}} or {{{c=-sqrt(4)*sqrt(6)}}} Break up the square root.



{{{c=2*sqrt(6)}}} or {{{c=-2*sqrt(6)}}} Take the square root of 4 to get 2.



So the solutions are {{{c=2*sqrt(6)}}} or {{{c=-2*sqrt(6)}}}