Question 208350
 It says to write each quotient in the form of {{{a + bi}}}
Don't know how
The problem is {{{(3i)/(-2+i)}}}
<pre><font size = 4 color = "indigo"><b> 
Put parentheses around it:

{{{((3i)/(-2+i))}}}

Multiply by {{{((-2-i)/(-2-i))}}}

{{{((3i)/(-2+i))((-2-i)/(-2-i)))}}}

Indicate the multiplications of tops and bottoms:

{{{((3i)(-2-i))/((-2+i)(-2-i))}}}

Ditribute on top,  FOIL on bottom:

{{{(-6i-3i^2)/(4+2i-2i-i^2)}}}

The middle two terms cancel in the bottom:

{{{(-6i-3i^2)/(4+cross(2i)-cross(2i)-i^2)}}}

{{{(-6i-3i^2)/(4-i^2)}}}

Replace both {{{i^2}}} terms by {{{-1}}}

{{{(-6i-3(-1))/(4-(-1))}}}

{{{(-6i+3)/(4+1))}}}

{{{(-6i+3)/5)}}}

Make two fractions:

{{{-6i/5+3/5}}}

Write the term with {{{i}}} second:

{{{3/5-6i/5}}}

Write the second term {{{(-6i)/5}}} as {{{-6/5}}}{{{i}}}, so
it will be in the form "{{{bi}}}"

{{{3/5-6/5}}}{{{i}}}

Edwin</pre>