Question 207808


{{{(x^2+x-2)/(x^2-x)}}} Start with the given expression.



{{{((x+2)(x-1))/(x^2-x)}}} Factor {{{x^2+x-2}}} to get {{{(x+2)(x-1)}}}.



{{{((x+2)(x-1))/(x(x-1))}}} Factor {{{x^2-x}}} to get {{{x(x-1)}}}.



{{{((x+2)highlight((x-1)))/(x*highlight((x-1)))}}} Highlight the common terms. 



{{{((x+2)cross((x-1)))/(x*cross((x-1)))}}} Cancel out the common terms. 



{{{(x+2)/x}}} Simplify. 



So {{{(x^2+x-2)/(x^2-x)}}} simplifies to {{{(x+2)/x}}}.



In other words, {{{(x^2+x-2)/(x^2-x)=(x+2)/x}}}