Question 207723

<a name="top">

<a href="#ans">Jump to Answer</a>



Looking at the expression {{{9x^2+18xy-7y^2}}}, we can see that the first coefficient is {{{9}}}, the second coefficient is {{{18}}}, and the last coefficient is {{{-7}}}.



Now multiply the first coefficient {{{9}}} by the last coefficient {{{-7}}} to get {{{(9)(-7)=-63}}}.



Now the question is: what two whole numbers multiply to {{{-63}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{18}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{-63}}} (the previous product).



Factors of {{{-63}}}:

1,3,7,9,21,63

-1,-3,-7,-9,-21,-63



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{-63}}}.

1*(-63) = -63
3*(-21) = -63
7*(-9) = -63
(-1)*(63) = -63
(-3)*(21) = -63
(-7)*(9) = -63


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{18}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>-63</font></td><td  align="center"><font color=black>1+(-63)=-62</font></td></tr><tr><td  align="center"><font color=black>3</font></td><td  align="center"><font color=black>-21</font></td><td  align="center"><font color=black>3+(-21)=-18</font></td></tr><tr><td  align="center"><font color=black>7</font></td><td  align="center"><font color=black>-9</font></td><td  align="center"><font color=black>7+(-9)=-2</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>63</font></td><td  align="center"><font color=black>-1+63=62</font></td></tr><tr><td  align="center"><font color=red>-3</font></td><td  align="center"><font color=red>21</font></td><td  align="center"><font color=red>-3+21=18</font></td></tr><tr><td  align="center"><font color=black>-7</font></td><td  align="center"><font color=black>9</font></td><td  align="center"><font color=black>-7+9=2</font></td></tr></table>



From the table, we can see that the two numbers {{{-3}}} and {{{21}}} add to {{{18}}} (the middle coefficient).



So the two numbers {{{-3}}} and {{{21}}} both multiply to {{{-63}}} <font size=4><b>and</b></font> add to {{{18}}}



Now replace the middle term {{{18xy}}} with {{{-3xy+21xy}}}. Remember, {{{-3}}} and {{{21}}} add to {{{18}}}. So this shows us that {{{-3xy+21xy=18xy}}}.



{{{9x^2+highlight(-3xy+21xy)-7y^2}}} Replace the second term {{{18xy}}} with {{{-3xy+21xy}}}.



{{{(9x^2-3xy)+(21xy-7y^2)}}} Group the terms into two pairs.



{{{3x(3x-y)+(21xy-7y^2)}}} Factor out the GCF {{{3x}}} from the first group.



{{{3x(3x-y)+7y(3x-y)}}} Factor out {{{7y}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(3x+7y)(3x-y)}}} Combine like terms. Or factor out the common term {{{3x-y}}}



===============================================================


<a name="ans">


Answer:



So {{{9x^2+18xy-7y^2}}} factors to {{{(3x+7y)(3x-y)}}}.



In other words, {{{9x^2+18xy-7y^2=(3x+7y)(3x-y)}}}.



Note: you can check the answer by expanding {{{(3x+7y)(3x-y)}}} to get {{{9x^2+18xy-7y^2}}} or by graphing the original expression and the answer (the two graphs should be identical).


<a href="#top">Jump to Top</a>