Question 207720

<a name="top">

<a href="#ans">Jump to Answer</a>



Looking at the expression {{{a^2+20a+100}}}, we can see that the first coefficient is {{{1}}}, the second coefficient is {{{20}}}, and the last term is {{{100}}}.



Now multiply the first coefficient {{{1}}} by the last term {{{100}}} to get {{{(1)(100)=100}}}.



Now the question is: what two whole numbers multiply to {{{100}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{20}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{100}}} (the previous product).



Factors of {{{100}}}:

1,2,4,5,10,20,25,50,100

-1,-2,-4,-5,-10,-20,-25,-50,-100



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{100}}}.

1*100 = 100
2*50 = 100
4*25 = 100
5*20 = 100
10*10 = 100
(-1)*(-100) = 100
(-2)*(-50) = 100
(-4)*(-25) = 100
(-5)*(-20) = 100
(-10)*(-10) = 100


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{20}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>100</font></td><td  align="center"><font color=black>1+100=101</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>50</font></td><td  align="center"><font color=black>2+50=52</font></td></tr><tr><td  align="center"><font color=black>4</font></td><td  align="center"><font color=black>25</font></td><td  align="center"><font color=black>4+25=29</font></td></tr><tr><td  align="center"><font color=black>5</font></td><td  align="center"><font color=black>20</font></td><td  align="center"><font color=black>5+20=25</font></td></tr><tr><td  align="center"><font color=red>10</font></td><td  align="center"><font color=red>10</font></td><td  align="center"><font color=red>10+10=20</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>-100</font></td><td  align="center"><font color=black>-1+(-100)=-101</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>-50</font></td><td  align="center"><font color=black>-2+(-50)=-52</font></td></tr><tr><td  align="center"><font color=black>-4</font></td><td  align="center"><font color=black>-25</font></td><td  align="center"><font color=black>-4+(-25)=-29</font></td></tr><tr><td  align="center"><font color=black>-5</font></td><td  align="center"><font color=black>-20</font></td><td  align="center"><font color=black>-5+(-20)=-25</font></td></tr><tr><td  align="center"><font color=black>-10</font></td><td  align="center"><font color=black>-10</font></td><td  align="center"><font color=black>-10+(-10)=-20</font></td></tr></table>



From the table, we can see that the two numbers {{{10}}} and {{{10}}} add to {{{20}}} (the middle coefficient).



So the two numbers {{{10}}} and {{{10}}} both multiply to {{{100}}} <font size=4><b>and</b></font> add to {{{20}}}



Now replace the middle term {{{20a}}} with {{{10a+10a}}}. Remember, {{{10}}} and {{{10}}} add to {{{20}}}. So this shows us that {{{10a+10a=20a}}}.



{{{a^2+highlight(10a+10a)+100}}} Replace the second term {{{20a}}} with {{{10a+10a}}}.



{{{(a^2+10a)+(10a+100)}}} Group the terms into two pairs.



{{{a(a+10)+(10a+100)}}} Factor out the GCF {{{a}}} from the first group.



{{{a(a+10)+10(a+10)}}} Factor out {{{10}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(a+10)(a+10)}}} Combine like terms. Or factor out the common term {{{a+10}}}



{{{(a+10)^2}}} Condense the terms.



===============================================================


<a name="ans">


Answer:



So {{{a^2+20a+100}}} factors to {{{(a+10)^2}}}.



In other words, {{{a^2+20a+100=(a+10)^2}}}.



Note: you can check the answer by expanding {{{(a+10)^2}}} to get {{{a^2+20a+100}}} or by graphing the original expression and the answer (the two graphs should be identical).


<a href="#top">Jump to Top</a>