Question 207387
<a name="top">

<a href="#ans">Jump to Answer</a>



{{{-w^2-8w+105}}} Start with the given expression.



{{{-(w^2+8w-105)}}} Factor out the GCF {{{-1}}}.



Now let's try to factor the inner expression {{{w^2+8w-105}}}



---------------------------------------------------------------



Looking at the expression {{{w^2+8w-105}}}, we can see that the first coefficient is {{{1}}}, the second coefficient is {{{8}}}, and the last term is {{{-105}}}.



Now multiply the first coefficient {{{1}}} by the last term {{{-105}}} to get {{{(1)(-105)=-105}}}.



Now the question is: what two whole numbers multiply to {{{-105}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{8}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{-105}}} (the previous product).



Factors of {{{-105}}}:

1,3,5,7,15,21,35,105

-1,-3,-5,-7,-15,-21,-35,-105



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{-105}}}.

1*(-105) = -105
3*(-35) = -105
5*(-21) = -105
7*(-15) = -105
(-1)*(105) = -105
(-3)*(35) = -105
(-5)*(21) = -105
(-7)*(15) = -105


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{8}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>-105</font></td><td  align="center"><font color=black>1+(-105)=-104</font></td></tr><tr><td  align="center"><font color=black>3</font></td><td  align="center"><font color=black>-35</font></td><td  align="center"><font color=black>3+(-35)=-32</font></td></tr><tr><td  align="center"><font color=black>5</font></td><td  align="center"><font color=black>-21</font></td><td  align="center"><font color=black>5+(-21)=-16</font></td></tr><tr><td  align="center"><font color=black>7</font></td><td  align="center"><font color=black>-15</font></td><td  align="center"><font color=black>7+(-15)=-8</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>105</font></td><td  align="center"><font color=black>-1+105=104</font></td></tr><tr><td  align="center"><font color=black>-3</font></td><td  align="center"><font color=black>35</font></td><td  align="center"><font color=black>-3+35=32</font></td></tr><tr><td  align="center"><font color=black>-5</font></td><td  align="center"><font color=black>21</font></td><td  align="center"><font color=black>-5+21=16</font></td></tr><tr><td  align="center"><font color=red>-7</font></td><td  align="center"><font color=red>15</font></td><td  align="center"><font color=red>-7+15=8</font></td></tr></table>



From the table, we can see that the two numbers {{{-7}}} and {{{15}}} add to {{{8}}} (the middle coefficient).



So the two numbers {{{-7}}} and {{{15}}} both multiply to {{{-105}}} <font size=4><b>and</b></font> add to {{{8}}}



Now replace the middle term {{{8w}}} with {{{-7w+15w}}}. Remember, {{{-7}}} and {{{15}}} add to {{{8}}}. So this shows us that {{{-7w+15w=8w}}}.



{{{w^2+highlight(-7w+15w)-105}}} Replace the second term {{{8w}}} with {{{-7w+15w}}}.



{{{(w^2-7w)+(15w-105)}}} Group the terms into two pairs.



{{{w(w-7)+(15w-105)}}} Factor out the GCF {{{w}}} from the first group.



{{{w(w-7)+15(w-7)}}} Factor out {{{15}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(w+15)(w-7)}}} Combine like terms. Or factor out the common term {{{w-7}}}



--------------------------------------------------



So {{{-(w^2+8w-105)}}} then factors further to {{{-(w+15)(w-7)}}}



===============================================================


<a name="ans">


Answer:



So {{{-w^2-8w+105}}} completely factors to {{{-(w+15)(w-7)}}}.



In other words, {{{-w^2-8w+105=-(w+15)(w-7)}}}.



Note: you can check the answer by expanding {{{-(w+15)(w-7)}}} to get {{{-w^2-8w+105}}} or by graphing the original expression and the answer (the two graphs should be identical).


<a href="#top">Jump to Top</a>