Question 206639
<a name="top">

<a href="#ans">Jump to Answer</a>



{{{y^2(y+1)-4y(y+1)-21(y+1)}}} Start with the given expression.



{{{(y+1)(y^2-4y-21)}}} Factor out the GCF {{{y+1}}}




Now let's factor {{{y^2-4y-21}}}:



Looking at the expression {{{y^2-4y-21}}}, we can see that the first coefficient is {{{1}}}, the second coefficient is {{{-4}}}, and the last term is {{{-21}}}.



Now multiply the first coefficient {{{1}}} by the last term {{{-21}}} to get {{{(1)(-21)=-21}}}.



Now the question is: what two whole numbers multiply to {{{-21}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{-4}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{-21}}} (the previous product).



Factors of {{{-21}}}:

1,3,7,21

-1,-3,-7,-21



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{-21}}}.

1*(-21) = -21
3*(-7) = -21
(-1)*(21) = -21
(-3)*(7) = -21


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{-4}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>-21</font></td><td  align="center"><font color=black>1+(-21)=-20</font></td></tr><tr><td  align="center"><font color=red>3</font></td><td  align="center"><font color=red>-7</font></td><td  align="center"><font color=red>3+(-7)=-4</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>21</font></td><td  align="center"><font color=black>-1+21=20</font></td></tr><tr><td  align="center"><font color=black>-3</font></td><td  align="center"><font color=black>7</font></td><td  align="center"><font color=black>-3+7=4</font></td></tr></table>



From the table, we can see that the two numbers {{{3}}} and {{{-7}}} add to {{{-4}}} (the middle coefficient).



So the two numbers {{{3}}} and {{{-7}}} both multiply to {{{-21}}} <font size=4><b>and</b></font> add to {{{-4}}}



Now replace the middle term {{{-4y}}} with {{{3y-7y}}}. Remember, {{{3}}} and {{{-7}}} add to {{{-4}}}. So this shows us that {{{3y-7y=-4y}}}.



{{{y^2+highlight(3y-7y)-21}}} Replace the second term {{{-4y}}} with {{{3y-7y}}}.



{{{(y^2+3y)+(-7y-21)}}} Group the terms into two pairs.



{{{y(y+3)+(-7y-21)}}} Factor out the GCF {{{y}}} from the first group.



{{{y(y+3)-7(y+3)}}} Factor out {{{7}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(y-7)(y+3)}}} Combine like terms. Or factor out the common term {{{y+3}}}




So this means that {{{(y+1)(y^2-4y-21)}}} factors to {{{(y+1)(y-7)(y+3)}}}



===============================================================


<a name="ans">


Answer:



So {{{y^2(y+1)-4y(y+1)-21(y+1)}}} completely factors to {{{(y+1)(y-7)(y+3)}}}.



In other words, {{{y^2(y+1)-4y(y+1)-21(y+1)=(y+1)(y-7)(y+3)}}}.




<a href="#top">Jump to Top</a>