Question 206120
1. First set up your triangle
2. Because {{{tan(x) = (opposite)/(adjacent)}}}
a. We can write the following equation
- {{{tan(72) = A/3}}}
b. Then solve for A
- {{{(3)tan(72) = (A/3)(3/1)}}}
- {{{3tan(72) = A}}}
- {{{3*3.0777 = A}}}
= {{{A = 9.2331}}}
3. Now use {{{cos(72) = (adjacent)/(hypotenuse)}}}
- {{{cos(72) = 3/B}}}
a. Solve for B
- {{{(B)cos(72) = (3/B)(B/1)}}}
- {{{Bcos(72) = 3}}}
- {{{(1/(cos(72)))(Bcos(72)) = 3*(1/(cos(72)))}}}
- {{{B = 3/cos(72)}}}
- {{{B = 3/.3090}}}
= {{{b = 9.7087}}}
4. So A = 9.2331 and B = 9.7087
---Check---
- {{{9.2331^2 + 3^2 = 9.7087^2}}}
- {{{85.2501 + 9 = 94.2586}}}
- {{{94.2501 = 94.2586}}} (It won't be exactly the same because we rounded earlier)
= {{{94.3 = 94.3}}} Correct