Question 205339
if y=(kx^2)/sqaure root (P) find the % change in y if x inxreases by 10% and p decreases by 15%
.
{{{y = (kx^2)/sqrt(P)}}}
Now, if 
x = x+.1x = x(1+.1) = 1.1x
P = P-.15P = P(1-.15) = .85P
.
Plug the values in:
{{{y = (k(1.1x)^2)/sqrt(.85P)}}}
Working the numerator:
{{{y = (k(1.21)x^2)/sqrt(.85P)}}}
{{{y = (1.21)(kx^2)/sqrt(.85P)}}}
Working the denominator:
{{{y = (1.21)(kx^2)/(sqrt(.85)sqrt(P))}}}
{{{y = (1.21/sqrt(.85))(kx^2)/sqrt(P)}}}
{{{y = (1.312)(kx^2)/sqrt(P)}}}
.
Percent change:
{{{((1.312)(kx^2)/sqrt(P)) / ((kx^2)/sqrt(P)) * 100}}}
{{{1.312 * 100}}}
Percent change then is: 131.2%