Question 204682


Looking at the expression {{{12x^2+19x+4}}}, we can see that the first coefficient is {{{12}}}, the second coefficient is {{{19}}}, and the last term is {{{4}}}.



Now multiply the first coefficient {{{12}}} by the last term {{{4}}} to get {{{(12)(4)=48}}}.



Now the question is: what two whole numbers multiply to {{{48}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{19}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{48}}} (the previous product).



Factors of {{{48}}}:

1,2,3,4,6,8,12,16,24,48

-1,-2,-3,-4,-6,-8,-12,-16,-24,-48



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{48}}}.

1*48
2*24
3*16
4*12
6*8
(-1)*(-48)
(-2)*(-24)
(-3)*(-16)
(-4)*(-12)
(-6)*(-8)


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{19}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>48</font></td><td  align="center"><font color=black>1+48=49</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>24</font></td><td  align="center"><font color=black>2+24=26</font></td></tr><tr><td  align="center"><font color=red>3</font></td><td  align="center"><font color=red>16</font></td><td  align="center"><font color=red>3+16=19</font></td></tr><tr><td  align="center"><font color=black>4</font></td><td  align="center"><font color=black>12</font></td><td  align="center"><font color=black>4+12=16</font></td></tr><tr><td  align="center"><font color=black>6</font></td><td  align="center"><font color=black>8</font></td><td  align="center"><font color=black>6+8=14</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>-48</font></td><td  align="center"><font color=black>-1+(-48)=-49</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>-24</font></td><td  align="center"><font color=black>-2+(-24)=-26</font></td></tr><tr><td  align="center"><font color=black>-3</font></td><td  align="center"><font color=black>-16</font></td><td  align="center"><font color=black>-3+(-16)=-19</font></td></tr><tr><td  align="center"><font color=black>-4</font></td><td  align="center"><font color=black>-12</font></td><td  align="center"><font color=black>-4+(-12)=-16</font></td></tr><tr><td  align="center"><font color=black>-6</font></td><td  align="center"><font color=black>-8</font></td><td  align="center"><font color=black>-6+(-8)=-14</font></td></tr></table>



From the table, we can see that the two numbers {{{3}}} and {{{16}}} add to {{{19}}} (the middle coefficient).



So the two numbers {{{3}}} and {{{16}}} both multiply to {{{48}}} <font size=4><b>and</b></font> add to {{{19}}}



Now replace the middle term {{{19x}}} with {{{3x+16x}}}. Remember, {{{3}}} and {{{16}}} add to {{{19}}}. So this shows us that {{{3x+16x=19x}}}.



{{{12x^2+highlight(3x+16x)+4}}} Replace the second term {{{19x}}} with {{{3x+16x}}}.



{{{(12x^2+3x)+(16x+4)}}} Group the terms into two pairs.



{{{3x(4x+1)+(16x+4)}}} Factor out the GCF {{{3x}}} from the first group.



{{{3x(4x+1)+4(4x+1)}}} Factor out {{{4}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(3x+4)(4x+1)}}} Combine like terms. Or factor out the common term {{{4x+1}}}


---------------------------------------------



Answer:



So {{{12x^2+19x+4}}} factors to {{{(3x+4)(4x+1)}}}.



Note: you can check the answer by FOILing {{{(3x+4)(4x+1)}}} to get {{{12x^2+19x+4}}} or by graphing the original expression and the answer (the two graphs should be identical).