Question 203897
{{{3x^2 = 2 - x}}} Start with the given equation



{{{3x^2 +x-2=0}}} Add "x" to both sides. Subtract 2 from both sides.



Now let's factor {{{3x^2+x-2}}}



Looking at the expression {{{3x^2+x-2}}}, we can see that the first coefficient is {{{3}}}, the second coefficient is {{{1}}}, and the last term is {{{-2}}}.



Now multiply the first coefficient {{{3}}} by the last term {{{-2}}} to get {{{(3)(-2)=-6}}}.



Now the question is: what two whole numbers multiply to {{{-6}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{1}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{-6}}} (the previous product).



Factors of {{{-6}}}:

1,2,3,6

-1,-2,-3,-6



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{-6}}}.

1*(-6)
2*(-3)
(-1)*(6)
(-2)*(3)


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{1}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>-6</font></td><td  align="center"><font color=black>1+(-6)=-5</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>-3</font></td><td  align="center"><font color=black>2+(-3)=-1</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>6</font></td><td  align="center"><font color=black>-1+6=5</font></td></tr><tr><td  align="center"><font color=red>-2</font></td><td  align="center"><font color=red>3</font></td><td  align="center"><font color=red>-2+3=1</font></td></tr></table>



From the table, we can see that the two numbers {{{-2}}} and {{{3}}} add to {{{1}}} (the middle coefficient).



So the two numbers {{{-2}}} and {{{3}}} both multiply to {{{-6}}} <font size=4><b>and</b></font> add to {{{1}}}



Now replace the middle term {{{1x}}} with {{{-2x+3x}}}. Remember, {{{-2}}} and {{{3}}} add to {{{1}}}. So this shows us that {{{-2x+3x=1x}}}.



{{{3x^2+highlight(-2x+3x)-2}}} Replace the second term {{{1x}}} with {{{-2x+3x}}}.



{{{(3x^2-2x)+(3x-2)}}} Group the terms into two pairs.



{{{x(3x-2)+(3x-2)}}} Factor out the GCF {{{x}}} from the first group.



{{{x(3x-2)+1(3x-2)}}} Factor out {{{1}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(x+1)(3x-2)}}} Combine like terms. Or factor out the common term {{{3x-2}}}



So {{{3x^2+x-2}}} factors to {{{(x+1)(3x-2)}}}.



Note: the order of the factors does not matter.