Question 202586

<a name="top">

<a href="#ans">Jump to Answer</a>



Looking at {{{3x^2-17xy+24y^2}}} we can see that the first term is {{{3x^2}}} and the last term is {{{24y^2}}} where the coefficients are 3 and 24 respectively.


Now multiply the first coefficient 3 and the last coefficient 24 to get 72. Now what two numbers multiply to 72 and add to the  middle coefficient -17? Let's list all of the factors of 72:




Factors of 72:

1,2,3,4,6,8,9,12,18,24,36,72


-1,-2,-3,-4,-6,-8,-9,-12,-18,-24,-36,-72 ...List the negative factors as well. This will allow us to find all possible combinations


These factors pair up and multiply to 72

1*72

2*36

3*24

4*18

6*12

8*9

(-1)*(-72)

(-2)*(-36)

(-3)*(-24)

(-4)*(-18)

(-6)*(-12)

(-8)*(-9)


note: remember two negative numbers multiplied together make a positive number



Now which of these pairs add to -17? Lets make a table of all of the pairs of factors we multiplied and see which two numbers add to -17



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>72</font></td><td  align="center"><font color=black>1+72=73</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>36</font></td><td  align="center"><font color=black>2+36=38</font></td></tr><tr><td  align="center"><font color=black>3</font></td><td  align="center"><font color=black>24</font></td><td  align="center"><font color=black>3+24=27</font></td></tr><tr><td  align="center"><font color=black>4</font></td><td  align="center"><font color=black>18</font></td><td  align="center"><font color=black>4+18=22</font></td></tr><tr><td  align="center"><font color=black>6</font></td><td  align="center"><font color=black>12</font></td><td  align="center"><font color=black>6+12=18</font></td></tr><tr><td  align="center"><font color=black>8</font></td><td  align="center"><font color=black>9</font></td><td  align="center"><font color=black>8+9=17</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>-72</font></td><td  align="center"><font color=black>-1+(-72)=-73</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>-36</font></td><td  align="center"><font color=black>-2+(-36)=-38</font></td></tr><tr><td  align="center"><font color=black>-3</font></td><td  align="center"><font color=black>-24</font></td><td  align="center"><font color=black>-3+(-24)=-27</font></td></tr><tr><td  align="center"><font color=black>-4</font></td><td  align="center"><font color=black>-18</font></td><td  align="center"><font color=black>-4+(-18)=-22</font></td></tr><tr><td  align="center"><font color=black>-6</font></td><td  align="center"><font color=black>-12</font></td><td  align="center"><font color=black>-6+(-12)=-18</font></td></tr><tr><td  align="center"><font color=red>-8</font></td><td  align="center"><font color=red>-9</font></td><td  align="center"><font color=red>-8+(-9)=-17</font></td></tr></table>





From this list we can see that -8 and -9 add up to -17 and multiply to 72



Now looking at the expression {{{3x^2-17xy+24y^2}}}, replace {{{-17xy}}} with {{{-8xy-9xy}}} (notice {{{-8xy-9xy}}} adds up to {{{-17xy}}}. So it is equivalent to {{{-17xy}}})


{{{3x^2+highlight(-8xy-9xy)+24y^2}}}



Now let's factor {{{3x^2-8xy-9xy+24y^2}}} by grouping:



{{{(3x^2-8xy)+(-9xy+24y^2)}}} Group like terms



{{{x(3x-8y)-3y(3x-8y)}}} Factor out the GCF of {{{x}}} out of the first group. Factor out the GCF of {{{-3y}}} out of the second group



{{{(x-3y)(3x-8y)}}} Since we have a common term of {{{3x-8y}}}, we can combine like terms


So {{{3x^2-8xy-9xy+24y^2}}} factors to {{{(x-3y)(3x-8y)}}}



So this also means that {{{3x^2-17xy+24y^2}}} factors to {{{(x-3y)(3x-8y)}}} (since {{{3x^2-17xy+24y^2}}} is equivalent to {{{3x^2-8xy-9xy+24y^2}}})




------------------------------------------------------------



<a name="ans">

     Answer:

So {{{3x^2-17xy+24y^2}}} factors to {{{(x-3y)(3x-8y)}}}



In other words, {{{3x^2-17xy+24y^2=(x-3y)(3x-8y)}}}



<a href="#top">Jump to Top</a>