Question 201629

<a name="top">

<a href="#ans">Jump to Answer</a>



Looking at the expression {{{185x^2+9x-2}}}, we can see that the first coefficient is {{{185}}}, the second coefficient is {{{9}}}, and the last term is {{{-2}}}.



Now multiply the first coefficient {{{185}}} by the last term {{{-2}}} to get {{{(185)(-2)=-370}}}.



Now the question is: what two whole numbers multiply to {{{-370}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{9}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{-370}}} (the previous product).



Factors of {{{-370}}}:

1,2,5,10,37,74,185,370

-1,-2,-5,-10,-37,-74,-185,-370



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{-370}}}.

1*(-370) = -370
2*(-185) = -370
5*(-74) = -370
10*(-37) = -370
(-1)*(370) = -370
(-2)*(185) = -370
(-5)*(74) = -370
(-10)*(37) = -370


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{9}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>-370</font></td><td  align="center"><font color=black>1+(-370)=-369</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>-185</font></td><td  align="center"><font color=black>2+(-185)=-183</font></td></tr><tr><td  align="center"><font color=black>5</font></td><td  align="center"><font color=black>-74</font></td><td  align="center"><font color=black>5+(-74)=-69</font></td></tr><tr><td  align="center"><font color=black>10</font></td><td  align="center"><font color=black>-37</font></td><td  align="center"><font color=black>10+(-37)=-27</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>370</font></td><td  align="center"><font color=black>-1+370=369</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>185</font></td><td  align="center"><font color=black>-2+185=183</font></td></tr><tr><td  align="center"><font color=black>-5</font></td><td  align="center"><font color=black>74</font></td><td  align="center"><font color=black>-5+74=69</font></td></tr><tr><td  align="center"><font color=black>-10</font></td><td  align="center"><font color=black>37</font></td><td  align="center"><font color=black>-10+37=27</font></td></tr></table>



From the table, we can see that there are no pairs of numbers which add to {{{9}}}. So {{{185x^2+9x-2}}} cannot be factored.



===============================================================


<a name="ans">


Answer:



So {{{185x^2+9x-2}}} doesn't factor at all (over the rational numbers).



So {{{185x^2+9x-2}}} is prime.



<a href="#top">Jump to Top</a>