Question 201025
{{{25m^2+81-90m}}} Start with the given expression.



{{{25m^2-90m+81}}} Rearrange the terms in descending exponential order.




Looking at the expression {{{25m^2-90m+81}}}, we can see that the first coefficient is {{{25}}}, the second coefficient is {{{-90}}}, and the last term is {{{81}}}.



Now multiply the first coefficient {{{25}}} by the last term {{{81}}} to get {{{(25)(81)=2025}}}.



Now the question is: what two whole numbers multiply to {{{2025}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{-90}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{2025}}} (the previous product).



Factors of {{{2025}}}:

1,3,5,9,15,25,27,45,75,81,135,225,405,675,2025

-1,-3,-5,-9,-15,-25,-27,-45,-75,-81,-135,-225,-405,-675,-2025



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{2025}}}.

1*2025
3*675
5*405
9*225
15*135
25*81
27*75
45*45
(-1)*(-2025)
(-3)*(-675)
(-5)*(-405)
(-9)*(-225)
(-15)*(-135)
(-25)*(-81)
(-27)*(-75)
(-45)*(-45)


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{-90}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>2025</font></td><td  align="center"><font color=black>1+2025=2026</font></td></tr><tr><td  align="center"><font color=black>3</font></td><td  align="center"><font color=black>675</font></td><td  align="center"><font color=black>3+675=678</font></td></tr><tr><td  align="center"><font color=black>5</font></td><td  align="center"><font color=black>405</font></td><td  align="center"><font color=black>5+405=410</font></td></tr><tr><td  align="center"><font color=black>9</font></td><td  align="center"><font color=black>225</font></td><td  align="center"><font color=black>9+225=234</font></td></tr><tr><td  align="center"><font color=black>15</font></td><td  align="center"><font color=black>135</font></td><td  align="center"><font color=black>15+135=150</font></td></tr><tr><td  align="center"><font color=black>25</font></td><td  align="center"><font color=black>81</font></td><td  align="center"><font color=black>25+81=106</font></td></tr><tr><td  align="center"><font color=black>27</font></td><td  align="center"><font color=black>75</font></td><td  align="center"><font color=black>27+75=102</font></td></tr><tr><td  align="center"><font color=black>45</font></td><td  align="center"><font color=black>45</font></td><td  align="center"><font color=black>45+45=90</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>-2025</font></td><td  align="center"><font color=black>-1+(-2025)=-2026</font></td></tr><tr><td  align="center"><font color=black>-3</font></td><td  align="center"><font color=black>-675</font></td><td  align="center"><font color=black>-3+(-675)=-678</font></td></tr><tr><td  align="center"><font color=black>-5</font></td><td  align="center"><font color=black>-405</font></td><td  align="center"><font color=black>-5+(-405)=-410</font></td></tr><tr><td  align="center"><font color=black>-9</font></td><td  align="center"><font color=black>-225</font></td><td  align="center"><font color=black>-9+(-225)=-234</font></td></tr><tr><td  align="center"><font color=black>-15</font></td><td  align="center"><font color=black>-135</font></td><td  align="center"><font color=black>-15+(-135)=-150</font></td></tr><tr><td  align="center"><font color=black>-25</font></td><td  align="center"><font color=black>-81</font></td><td  align="center"><font color=black>-25+(-81)=-106</font></td></tr><tr><td  align="center"><font color=black>-27</font></td><td  align="center"><font color=black>-75</font></td><td  align="center"><font color=black>-27+(-75)=-102</font></td></tr><tr><td  align="center"><font color=red>-45</font></td><td  align="center"><font color=red>-45</font></td><td  align="center"><font color=red>-45+(-45)=-90</font></td></tr></table>



From the table, we can see that the two numbers {{{-45}}} and {{{-45}}} add to {{{-90}}} (the middle coefficient).



So the two numbers {{{-45}}} and {{{-45}}} both multiply to {{{2025}}} <font size=4><b>and</b></font> add to {{{-90}}}



Now replace the middle term {{{-90m}}} with {{{-45m-45m}}}. Remember, {{{-45}}} and {{{-45}}} add to {{{-90}}}. So this shows us that {{{-45m-45m=-90m}}}.



{{{25m^2+highlight(-45m-45m)+81}}} Replace the second term {{{-90m}}} with {{{-45m-45m}}}.



{{{(25m^2-45m)+(-45m+81)}}} Group the terms into two pairs.



{{{5m(5m-9)+(-45m+81)}}} Factor out the GCF {{{5m}}} from the first group.



{{{5m(5m-9)-9(5m-9)}}} Factor out {{{9}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(5m-9)(5m-9)}}} Combine like terms. Or factor out the common term {{{5m-9}}}



{{{(5m-9)^2}}} Condense


---------------------------------------------



Answer:



So {{{25m^2+81-90m}}} factors to {{{(5m-9)^2}}}.



In other words, {{{25m^2+81-90m=(5m-9)^2}}} 



Note: you can check the answer by FOILing {{{(5m-9)^2}}} to get {{{25m^2+81-90m}}} or by graphing the original expression and the answer (the two graphs should be identical).