Question 200762
Think of the problem like this



Let 

L1  = Line #1
L2  = Line #2
L3  = Line #3
L4  = Line #4
L5  = Line #5
L6  = Line #6
L7  = Line #7
L8  = Line #8
L9  = Line #9
L10 = Line #10


Now you want to know the maximum number of intersections between lines 1 through 10. So you'll have the intersections between L1 and L2, between L2 and L3, L4 and L5, etc. We'll denote these intersections as the ordered pairs (L1, L2), (L2, L3), (L3, L4), (L4, L5), etc...



So you'll have the ordered pairs (these are ALL the possible intersections of the 10 lines):



<table cellspacing=10><tr><td>(L1, L2),</td><td>(L1, L3),</td><td>(L1, L4),</td><td>(L1, L5),</td><td>(L1, L6),</td><td>(L1, L7),</td><td>(L1, L8),</td><td>(L1, L9),</td><td>(L1, L10)</td></tr><tr><td>(L2, L1),</td><td>(L2, L3),</td><td>(L2, L4),</td><td>(L2, L5),</td><td>(L2, L6),</td><td>(L2, L7),</td><td>(L2, L8),</td><td>(L2, L9),</td><td>(L2, L10)</td></tr><tr><td>(L3, L1),</td><td>(L3, L2),</td><td>(L3, L4),</td><td>(L3, L5),</td><td>(L3, L6),</td><td>(L3, L7),</td><td>(L3, L8),</td><td>(L3, L9),</td><td>(L3, L10)</td></tr><tr><td>(L4, L1),</td><td>(L4, L2),</td><td>(L4, L3),</td><td>(L4, L5),</td><td>(L4, L6),</td><td>(L4, L7),</td><td>(L4, L8),</td><td>(L4, L9),</td><td>(L4, L10)</td></tr><tr><td>(L5, L1),</td><td>(L5, L2),</td><td>(L5, L3),</td><td>(L5, L4),</td><td>(L5, L6),</td><td>(L5, L7),</td><td>(L5, L8),</td><td>(L5, L9),</td><td>(L5, L10)</td></tr><tr><td>(L6, L1),</td><td>(L6, L2),</td><td>(L6, L3),</td><td>(L6, L4),</td><td>(L6, L5),</td><td>(L6, L7),</td><td>(L6, L8),</td><td>(L6, L9),</td><td>(L6, L10)</td></tr><tr><td>(L7, L1),</td><td>(L7, L2),</td><td>(L7, L3),</td><td>(L7, L4),</td><td>(L7, L5),</td><td>(L7, L6),</td><td>(L7, L8),</td><td>(L7, L9),</td><td>(L7, L10)</td></tr><tr><td>(L8, L1),</td><td>(L8, L2),</td><td>(L8, L3),</td><td>(L8, L4),</td><td>(L8, L5),</td><td>(L8, L6),</td><td>(L8, L7),</td><td>(L8, L9),</td><td>(L8, L10)</td></tr><tr><td>(L9, L1),</td><td>(L9, L2),</td><td>(L9, L3),</td><td>(L9, L4),</td><td>(L9, L5),</td><td>(L9, L6),</td><td>(L9, L7),</td><td>(L9, L8),</td><td>(L9, L10)</td></tr><tr><td>(L10, L1),</td><td>(L10, L2),</td><td>(L10, L3),</td><td>(L10, L4),</td><td>(L10, L5),</td><td>(L10, L6),</td><td>(L10, L7),</td><td>(L10, L8),</td><td>(L10, L9),</td></tr></table>





Note: one ordered pair (L8, L4) means that you have the intersection between Lines 8 and 4.



Now count all the ordered pairs to get 90 ordered pairs total.



Now if you look through the list, you'll notice that the ordered pairs (L1, L2) and (L2, L1) are the same intersection. So this means that there's twice as much intersections than there really are. So divide the count of 90 by 2 to get 45. 



So there are 45 different intersections (maximum) with 10 distinct lines.



----------------------------------------------------------------------------


If this didn't make sense, or if you want the shortcut, then simply compute the combination 10 C 2 to get


10 C 2 = (10!)/(2!(10-2)!) = (10!)/(2!(8)!) = (10*9)/2 = 90/2 = 45



So you still get 45 different intersections.



If you are really bold (and really careful), you can draw out the 10 lines and count the number of intersections. If not, then try drawing out 5 lines and test the formula.



If you have any questions, email me at <a href="mailto:jim_thompson5910@hotmail.com">jim_thompson5910@hotmail.com</a>.
Check out my <a href="http://www.freewebs.com/jimthompson5910/home.html">website</a> if you are interested in tutoring.