Question 200486

Looking at the expression {{{z^2-5z-14}}}, we can see that the first coefficient is {{{1}}}, the second coefficient is {{{-5}}}, and the last term is {{{-14}}}.



Now multiply the first coefficient {{{1}}} by the last term {{{-14}}} to get {{{(1)(-14)=-14}}}.



Now the question is: what two whole numbers multiply to {{{-14}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{-5}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{-14}}} (the previous product).



Factors of {{{-14}}}:

1,2,7,14

-1,-2,-7,-14



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{-14}}}.

1*(-14)
2*(-7)
(-1)*(14)
(-2)*(7)


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{-5}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>-14</font></td><td  align="center"><font color=black>1+(-14)=-13</font></td></tr><tr><td  align="center"><font color=red>2</font></td><td  align="center"><font color=red>-7</font></td><td  align="center"><font color=red>2+(-7)=-5</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>14</font></td><td  align="center"><font color=black>-1+14=13</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>7</font></td><td  align="center"><font color=black>-2+7=5</font></td></tr></table>



From the table, we can see that the two numbers {{{2}}} and {{{-7}}} add to {{{-5}}} (the middle coefficient).



So the two numbers {{{2}}} and {{{-7}}} both multiply to {{{-14}}} <font size=4><b>and</b></font> add to {{{-5}}}



Now replace the middle term {{{-5z}}} with {{{2z-7z}}}. Remember, {{{2}}} and {{{-7}}} add to {{{-5}}}. So this shows us that {{{2z-7z=-5z}}}.



{{{z^2+highlight(2z-7z)-14}}} Replace the second term {{{-5z}}} with {{{2z-7z}}}.



{{{(z^2+2z)+(-7z-14)}}} Group the terms into two pairs.



{{{z(z+2)+(-7z-14)}}} Factor out the GCF {{{z}}} from the first group.



{{{z(z+2)-7(z+2)}}} Factor out {{{7}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(z-7)(z+2)}}} Combine like terms. Or factor out the common term {{{z+2}}}


---------------------------------------------



Answer:



So {{{z^2-5z-14}}} factors to {{{(z-7)(z+2)}}}.



Note: you can check the answer by FOILing {{{(z-7)(z+2)}}} to get {{{z^2-5z-14}}} or by graphing the original expression and the answer (the two graphs should be identical).