Question 200246
Solve the following 3 separate equations for x
:
Assume you mean
:
1. 
2^x + 1 = 27
2^x = 27 - 1
2^x = 26
using nat logs
ln(2^x) = ln(26)
use the log equiv of exponents
x*ln(2) = ln(26)
.693x = 3.358
x = {{{3.358/.693}}}
x = 4.7
:
Check solution on calc; enter:
2^4.7 + 1 = 26.99 ~ 27
:
:
2.
 4x + 2 = 256
4x = 256 - 2
4x = 254
x = {{{254/4}}}
x = 63.5
:
Check solution on a calc, enter
4(63.5) + 2 = 256
:
:
3.
42x + 2 = 256
42x = 256 - 2
42x = 254
x = {{{254/42}}}
x = 6{{{2/42}}} = 6{{{1/21}}}
:
Check solution on a calc; decimal x = 6.0761
42(6.04761) + 2 = 255.999 ~ 256