Question 199600


Looking at the expression {{{20x^2-44x+21}}}, we can see that the first coefficient is {{{20}}}, the second coefficient is {{{-44}}}, and the last term is {{{21}}}.



Now multiply the first coefficient {{{20}}} by the last term {{{21}}} to get {{{(20)(21)=420}}}.



Now the question is: what two whole numbers multiply to {{{420}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{-44}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{420}}} (the previous product).



Factors of {{{420}}}:

1,2,3,4,5,6,7,10,12,14,15,20,21,28,30,35,42,60,70,84,105,140,210,420

-1,-2,-3,-4,-5,-6,-7,-10,-12,-14,-15,-20,-21,-28,-30,-35,-42,-60,-70,-84,-105,-140,-210,-420



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{420}}}.

1*420
2*210
3*140
4*105
5*84
6*70
7*60
10*42
12*35
14*30
15*28
20*21
(-1)*(-420)
(-2)*(-210)
(-3)*(-140)
(-4)*(-105)
(-5)*(-84)
(-6)*(-70)
(-7)*(-60)
(-10)*(-42)
(-12)*(-35)
(-14)*(-30)
(-15)*(-28)
(-20)*(-21)


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{-44}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>420</font></td><td  align="center"><font color=black>1+420=421</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>210</font></td><td  align="center"><font color=black>2+210=212</font></td></tr><tr><td  align="center"><font color=black>3</font></td><td  align="center"><font color=black>140</font></td><td  align="center"><font color=black>3+140=143</font></td></tr><tr><td  align="center"><font color=black>4</font></td><td  align="center"><font color=black>105</font></td><td  align="center"><font color=black>4+105=109</font></td></tr><tr><td  align="center"><font color=black>5</font></td><td  align="center"><font color=black>84</font></td><td  align="center"><font color=black>5+84=89</font></td></tr><tr><td  align="center"><font color=black>6</font></td><td  align="center"><font color=black>70</font></td><td  align="center"><font color=black>6+70=76</font></td></tr><tr><td  align="center"><font color=black>7</font></td><td  align="center"><font color=black>60</font></td><td  align="center"><font color=black>7+60=67</font></td></tr><tr><td  align="center"><font color=black>10</font></td><td  align="center"><font color=black>42</font></td><td  align="center"><font color=black>10+42=52</font></td></tr><tr><td  align="center"><font color=black>12</font></td><td  align="center"><font color=black>35</font></td><td  align="center"><font color=black>12+35=47</font></td></tr><tr><td  align="center"><font color=black>14</font></td><td  align="center"><font color=black>30</font></td><td  align="center"><font color=black>14+30=44</font></td></tr><tr><td  align="center"><font color=black>15</font></td><td  align="center"><font color=black>28</font></td><td  align="center"><font color=black>15+28=43</font></td></tr><tr><td  align="center"><font color=black>20</font></td><td  align="center"><font color=black>21</font></td><td  align="center"><font color=black>20+21=41</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>-420</font></td><td  align="center"><font color=black>-1+(-420)=-421</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>-210</font></td><td  align="center"><font color=black>-2+(-210)=-212</font></td></tr><tr><td  align="center"><font color=black>-3</font></td><td  align="center"><font color=black>-140</font></td><td  align="center"><font color=black>-3+(-140)=-143</font></td></tr><tr><td  align="center"><font color=black>-4</font></td><td  align="center"><font color=black>-105</font></td><td  align="center"><font color=black>-4+(-105)=-109</font></td></tr><tr><td  align="center"><font color=black>-5</font></td><td  align="center"><font color=black>-84</font></td><td  align="center"><font color=black>-5+(-84)=-89</font></td></tr><tr><td  align="center"><font color=black>-6</font></td><td  align="center"><font color=black>-70</font></td><td  align="center"><font color=black>-6+(-70)=-76</font></td></tr><tr><td  align="center"><font color=black>-7</font></td><td  align="center"><font color=black>-60</font></td><td  align="center"><font color=black>-7+(-60)=-67</font></td></tr><tr><td  align="center"><font color=black>-10</font></td><td  align="center"><font color=black>-42</font></td><td  align="center"><font color=black>-10+(-42)=-52</font></td></tr><tr><td  align="center"><font color=black>-12</font></td><td  align="center"><font color=black>-35</font></td><td  align="center"><font color=black>-12+(-35)=-47</font></td></tr><tr><td  align="center"><font color=red>-14</font></td><td  align="center"><font color=red>-30</font></td><td  align="center"><font color=red>-14+(-30)=-44</font></td></tr><tr><td  align="center"><font color=black>-15</font></td><td  align="center"><font color=black>-28</font></td><td  align="center"><font color=black>-15+(-28)=-43</font></td></tr><tr><td  align="center"><font color=black>-20</font></td><td  align="center"><font color=black>-21</font></td><td  align="center"><font color=black>-20+(-21)=-41</font></td></tr></table>



From the table, we can see that the two numbers {{{-14}}} and {{{-30}}} add to {{{-44}}} (the middle coefficient).



So the two numbers {{{-14}}} and {{{-30}}} both multiply to {{{420}}} <font size=4><b>and</b></font> add to {{{-44}}}



Now replace the middle term {{{-44x}}} with {{{-14x-30x}}}. Remember, {{{-14}}} and {{{-30}}} add to {{{-44}}}. So this shows us that {{{-14x-30x=-44x}}}.



{{{20x^2+highlight(-14x-30x)+21}}} Replace the second term {{{-44x}}} with {{{-14x-30x}}}.



{{{(20x^2-14x)+(-30x+21)}}} Group the terms into two pairs.



{{{2x(10x-7)+(-30x+21)}}} Factor out the GCF {{{2x}}} from the first group.



{{{2x(10x-7)-3(10x-7)}}} Factor out {{{3}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(2x-3)(10x-7)}}} Combine like terms. Or factor out the common term {{{10x-7}}}


---------------------------------------------



Answer:



So {{{20x^2-44x+21}}} factors to {{{(2x-3)(10x-7)}}}.



Note: you can check the answer by FOILing {{{(2x-3)(10x-7)}}} to get {{{20x^2-44x+21}}} or by graphing the original expression and the answer (the two graphs should be identical).