Question 199019


{{{(3x+4)(2x-6)}}} Start with the given expression.



Now let's FOIL the expression.



Remember, when you FOIL an expression, you follow this procedure:



{{{(highlight(3x)+4)(highlight(2x)-6)}}} Multiply the <font color="red">F</font>irst terms:{{{(3*x)*(2*x)=6*x^2}}}.



{{{(highlight(3x)+4)(2x+highlight(-6))}}} Multiply the <font color="red">O</font>uter terms:{{{(3*x)*(-6)=-18*x}}}.



{{{(3x+highlight(4))(highlight(2x)-6)}}} Multiply the <font color="red">I</font>nner terms:{{{(4)*(2*x)=8*x}}}.



{{{(3x+highlight(4))(2x+highlight(-6))}}} Multiply the <font color="red">L</font>ast terms:{{{(4)*(-6)=-24}}}.



---------------------------------------------------

So we have the terms: {{{6*x^2}}}, {{{-18*x}}}, {{{8*x}}}, {{{-24}}} 



{{{6*x^2-18*x+8*x-24}}} Now add every term listed above to make a single expression.



{{{6*x^2-10*x-24}}} Now combine like terms.



So {{{(3x+4)(2x-6)}}} FOILs to {{{6*x^2-10*x-24}}}.



In other words, {{{(3x+4)(2x-6)=6*x^2-10*x-24}}}.